精英家教网 > 高中数学 > 题目详情
1.已知圆C:x2+(y-2)2=1,D为x轴正半轴上的动点.若圆C与圆D相外切,且它们的内公切线恰好经过坐标原点,则圆D的方程是(x±2$\sqrt{3}$)2+y2=9.

分析 利用两个圆相外切的性质,求得圆D的圆心横坐标及半径,可得圆D的标准方程.

解答 解:圆C:x2+(y-2)2=1得圆心C( 0,2)、半径等于1,
设两个圆的公共切点为M,则由两圆相外切的性质可得OM=$\sqrt{{OC}^{2}-1}$=$\sqrt{3}$.
设圆D的半径为r,点D(a,0),在Rt△OMD中,由勾股定理可得OM2+r2=OD2,即3+r2=a2  ①.
再根据圆C与圆D相外切,可得CD=$\sqrt{{a}^{2}{+2}^{2}}$=1+r  ②.
由①②求得r=3,a=±2$\sqrt{3}$,∴圆D的方程是 (x±2$\sqrt{3}$)2+y2=9,
故答案为:(x±2$\sqrt{3}$)2+y2=9.

点评 本题主要考查两个圆相外切的性质,用待定系数法求圆的标准方程,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,过点(1,$\frac{3}{2}$),过其右焦点F作直线l交C于A、B两点.
(Ⅰ)求椭圆方程;
(Ⅱ)过A作x轴的垂线交C于另一点Q(Q不与A、B重合).
(i)设G为△ABO的外接圆的圆心,证明:$\frac{|AB|}{|GF|}$为定值;
(ii)证明:直线BQ过定点P.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知一次函数f(x)=ax-2.
(1)当a=3时,解不等式|f(x)|<4;
(2)若不等式|f(x)|≤3对任意x∈[0,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,且sin2A+sin2B=sin2C-$\sqrt{2}$sinA•sinB,sinA=$\frac{\sqrt{5}}{5}$,若c-a=5-$\sqrt{10}$,则b=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{AB}$,$\overrightarrow{AC}$,$\overrightarrow{AD}$在正方形网格中的位置如图所示,若$\overrightarrow{AC}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,则λμ=(  )
A.-3B.3C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}中,a1=4,n(an-an-1-2)=an-1+2n2,则$\frac{1}{{a}_{12}}$+$\frac{1}{{a}_{13}}$+$\frac{1}{{a}_{14}}$+…+$\frac{1}{{a}_{23}}$=(  )
A.$\frac{1}{48}$B.$\frac{1}{24}$C.$\frac{23}{48}$D.$\frac{11}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式x2$-\frac{1}{6}$x$-\frac{1}{6}$<0的解集为(  )
A.(-$\frac{1}{3}$,$\frac{1}{2}$)B.(-∞,-$\frac{1}{3}$)∪($\frac{1}{2}$,+∞)C.(-$\frac{1}{2}$,$\frac{1}{3}$)D.(-∞,$-\frac{1}{2}$)∪($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设Sn为数列{an}的前n项和,对任意的n∈N+,都有Sn=2-an,数列{bn}满足b1=2a1,bn=$\frac{{b}_{n-1}}{1+{b}_{n-1}}$(n≥2,n∈N+).
(1)求证:数列{an}是等比数列,并求{an}的通项公式;
(2)求数列{bn}的通项公式
(3)求数列{$\frac{1}{{a}_{n+2}{b}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知甲船在灯塔北偏东80°处,且与灯塔相距2km,乙船在灯塔北偏西40°处,两船相距3km,那么乙船与灯塔的距离为$\sqrt{6}$-1km.

查看答案和解析>>

同步练习册答案