分析 由题意,画出示意图,先确定|AC|、|BC|和∠BAC的值,然后在△ABC中应用余弦定理可求得|AB|的值
解答
解:由题意如图,可知|AC|=2,|BC|=3,∠BAC=120°,设BC=x,x>0,
在△ABC中由余弦定理可得,
|BC|2=|AC|2+|AB|2-2|AC||AB|cos∠BAC得到9=4+x2-2×2×x•(-$\frac{1}{2}$),整理得x2+2x-5=0,解得x=$\sqrt{6}$-1;
∴|AB|=$\sqrt{6}$-1km.
故答案为:$\sqrt{6}-1$.
点评 本题主要考查余弦定理的应用,考查根据解三角形的有关定理来解决实际问题的能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1-2$\sqrt{2}$] | B. | (-2,1-2$\sqrt{2}$] | C. | [1-2$\sqrt{2}$,1+2$\sqrt{2}$] | D. | [1+2$\sqrt{2}$,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$f($\frac{π}{3}$)>f($\frac{π}{6}$) | B. | $\sqrt{3}$f($\frac{π}{3}$)<f($\frac{π}{6}$) | C. | $\frac{\sqrt{2}}{2}$f(1)>cos1f($\frac{π}{4}$) | D. | $\sqrt{2}$f($\frac{π}{6}$)<$\sqrt{3}$f($\frac{π}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=$\frac{π}{2}$ | B. | x=$\frac{π}{3}$ | C. | x=$\frac{π}{4}$ | D. | x=$\frac{π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com