精英家教网 > 高中数学 > 题目详情
6.已知圆C1:(x-1)2+(y-1)2=4与圆C2:(x-a)2+(y-3)2=9相交,且公共弦长为4,则两圆的圆心距|C1C2|=2$\sqrt{3}$.

分析 根据弦长公式求出a是值,求出圆心距即可.

解答 解:C1-C2:(2a-2)x+4y+5-a2=0,
圆心C1(1,1)到(2a-2)x+4y+5-a2=0的距离d=$\frac{{|a}^{2}-2a-7|}{\sqrt{{4a}^{2}-8a+20}}$,r=2,
故4-$\frac{{{(a}^{2}-2a-7)}^{2}}{{4a}^{2}-8a+20}$=4,
解得:a=1+2$\sqrt{2}$,
故|C1C2|=2$\sqrt{3}$,
故答案为:2$\sqrt{3}$.

点评 本题考查了求圆心距问题,考查弦长公式,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{AB}$,$\overrightarrow{AC}$,$\overrightarrow{AD}$在正方形网格中的位置如图所示,若$\overrightarrow{AC}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,则λμ=(  )
A.-3B.3C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.同时具有性质:①图象的一个零点和其相邻对称轴间的距离是$\frac{π}{4}$;②在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上是增函数的一个函数为(  )
A.y=cos($\frac{x}{2}$+$\frac{π}{6}$)B.y=sin($\frac{x}{2}$+$\frac{π}{6}$)C.y=sin(2x-$\frac{π}{6}$)D.y=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平面直角坐标系中,已知向量$\overrightarrow{m}$=(1,0),$\overrightarrow{n}$=(0,1),定点A的坐标为(1,2),点M满足$\overrightarrow{OM}$-2$\overrightarrow{OA}$=2$\overrightarrow{m}$+$\overrightarrow{n}$,曲线C={N|$\overrightarrow{AN}$=$\overrightarrow{m}$cosθ+$\overrightarrow{n}$sinθ,0≤θ≤2π},区域U={P|r≤|$\overrightarrow{MP}$|≤R,0<r<R},曲线C与区域U的交集为两段分离的曲线,则(  )
A.3$\sqrt{2}$-1<r<R<3$\sqrt{2}$+1B.2$\sqrt{3}$-1<r<2$\sqrt{3}$+1≤RC.r≤2$\sqrt{3}$-1<R<2$\sqrt{3}$+1D.r<2$\sqrt{3}$-1<R<2$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,其定义域和值域分别与y=x${\;}^{-\frac{1}{2}}$的定义域和值域相同的是(  )
A.y=|x|B.y=3x
C.$y={a^{{{log}_a}x}}(a>0,a≠1)$D.y=lgx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知甲船在灯塔北偏东80°处,且与灯塔相距2km,乙船在灯塔北偏西40°处,两船相距3km,那么乙船与灯塔的距离为$\sqrt{6}$-1km.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某商品的销售额y(万元)与广告费x(万元)存在线性相关,根据一组样本数据(xi,yi)(i=1,2,3,…,n)用最小二乘法建立的回归方程为y=10+0.4x,则下列结论成立的是(  )
A.y与x具有负的线性相关关系
B.若r表示变量与之间相关系数,则r=0.4
C.当广告费为1万元时,商品的销售额为10.4万元
D.当广告费为1万元时,商品的销售额为10.4万元左右

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.方程cosπx=$\frac{1}{4}$x的解的个数是(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知双曲线方程为3x2-y2=3.
(1)求以定点A(2,1)为中点的弦所在的直线方程;
(2)以定点B(1,1)为中点的弦存在吗?若存在,求出其所在的直线方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案