精英家教网 > 高中数学 > 题目详情
3.定义在(0,$\frac{π}{2}$)上的函数f(x),f′(x)是它的导函数,且恒有f′(x)<-f(x)tanx成立,则(  )
A.$\sqrt{3}$f($\frac{π}{3}$)>f($\frac{π}{6}$)B.$\sqrt{3}$f($\frac{π}{3}$)<f($\frac{π}{6}$)C.$\frac{\sqrt{2}}{2}$f(1)>cos1f($\frac{π}{4}$)D.$\sqrt{2}$f($\frac{π}{6}$)<$\sqrt{3}$f($\frac{π}{4}$)

分析 由f′(x)<-f(x)tanx得[sinxf(x)]′<0,可知函数y=sinxf(x)是减函数,利用单调性即可判断.

解答 解:由f(x)<-f′(x)tanx,得
cosxf(x)+sinxf′(x)<0,
即[sinxf(x)]′<0,
∴y=sinxf(x)是减函数,
则sin$\frac{π}{3}$f($\frac{π}{3}$)<sin$\frac{π}{6}$f($\frac{π}{6}$),
∴$\sqrt{3}$f($\frac{π}{3}$)<f($\frac{π}{6}$).
故选:B.

点评 本题考查了导数的运用,结合单调性判断大小,关键是根据题意构造函数,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.不等式x2$-\frac{1}{6}$x$-\frac{1}{6}$<0的解集为(  )
A.(-$\frac{1}{3}$,$\frac{1}{2}$)B.(-∞,-$\frac{1}{3}$)∪($\frac{1}{2}$,+∞)C.(-$\frac{1}{2}$,$\frac{1}{3}$)D.(-∞,$-\frac{1}{2}$)∪($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平面直角坐标系中,已知向量$\overrightarrow{m}$=(1,0),$\overrightarrow{n}$=(0,1),定点A的坐标为(1,2),点M满足$\overrightarrow{OM}$-2$\overrightarrow{OA}$=2$\overrightarrow{m}$+$\overrightarrow{n}$,曲线C={N|$\overrightarrow{AN}$=$\overrightarrow{m}$cosθ+$\overrightarrow{n}$sinθ,0≤θ≤2π},区域U={P|r≤|$\overrightarrow{MP}$|≤R,0<r<R},曲线C与区域U的交集为两段分离的曲线,则(  )
A.3$\sqrt{2}$-1<r<R<3$\sqrt{2}$+1B.2$\sqrt{3}$-1<r<2$\sqrt{3}$+1≤RC.r≤2$\sqrt{3}$-1<R<2$\sqrt{3}$+1D.r<2$\sqrt{3}$-1<R<2$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知甲船在灯塔北偏东80°处,且与灯塔相距2km,乙船在灯塔北偏西40°处,两船相距3km,那么乙船与灯塔的距离为$\sqrt{6}$-1km.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某商品的销售额y(万元)与广告费x(万元)存在线性相关,根据一组样本数据(xi,yi)(i=1,2,3,…,n)用最小二乘法建立的回归方程为y=10+0.4x,则下列结论成立的是(  )
A.y与x具有负的线性相关关系
B.若r表示变量与之间相关系数,则r=0.4
C.当广告费为1万元时,商品的销售额为10.4万元
D.当广告费为1万元时,商品的销售额为10.4万元左右

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示是一个算法的程序框图,最后输出k的值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.方程cosπx=$\frac{1}{4}$x的解的个数是(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F.直线l:2x-y=0交椭圆E于A,B两点.若|AF|+|BF|=6,点F到直线l的距离不小于2,则椭圆E的离心率的取值范围是(  )
A.(0,$\frac{\sqrt{5}}{3}$]B.[$\frac{\sqrt{5}}{3}$,1)C.[$\frac{1}{2}$,1)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重,大气污染可引起心悸,呼吸困难等心肺疾病,为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到了如下的列联表:
  患心肺疾病 不患心肺疾病 合计
 男 20 5 25
 女 10 15 25
 合计 30 20 50
(1)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由
(2)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3位进行其他方面的排查,其中患胃病的人数为ξ,求ξ的分布列、数学期望
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
下面的临界值表仅供参考.
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

同步练习册答案