精英家教网 > 高中数学 > 题目详情
8.如图所示是一个算法的程序框图,最后输出k的值是5.

分析 模拟执行程序框图,依次写出每次循环得到的S,k的值,当S=22,k=5时,不满足条件S<20,退出循环,输出k的值为5.

解答 解:模拟执行程序框图,可得
k=1,S=0
满足条件S<20,S=21=2,k=2
满足条件S<20,S=21+22=6,k=3
满足条件S<20,S=6+23=14,k=4
满足条件S<20,S=14+24=30,k=5
不满足条件S<20,退出循环,输出k的值为5.
故答案为:5.

点评 本题主要考查了循环结构的程序考查,依次写出每次循环得到的S,k的值即可得解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设椭圆C1的焦点在x轴,离心率为$\frac{\sqrt{3}}{2}$,抛物线C2的焦点在y轴上,C1的中心和C2的顶点均为原点,点($\sqrt{2}$,-$\frac{\sqrt{2}}{2}$)在C1上,点($\sqrt{2}$,-1)在C2上.
(1)求曲线C1、C2的标准方程;
(2)请问是否存在过抛物线C2的焦点F的直线l与椭圆C1交于不同两点M、N,使得以线段MN为直径的圆过原点O?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“我获奖了”,丁说:“是乙获奖”.若四位歌手的话只有一句是错的,则获奖的歌手是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(2+a)x+a2lnx,g(x)=x2+2x+b(a,b∈R).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设两曲线y=f(x)与y=g(x)有公共点,且在公共点处的切线相同,若a>0,试建立b关于a的函数关系式,并求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在(0,$\frac{π}{2}$)上的函数f(x),f′(x)是它的导函数,且恒有f′(x)<-f(x)tanx成立,则(  )
A.$\sqrt{3}$f($\frac{π}{3}$)>f($\frac{π}{6}$)B.$\sqrt{3}$f($\frac{π}{3}$)<f($\frac{π}{6}$)C.$\frac{\sqrt{2}}{2}$f(1)>cos1f($\frac{π}{4}$)D.$\sqrt{2}$f($\frac{π}{6}$)<$\sqrt{3}$f($\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若G为△ABC的重心,则(  )
A.$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$B.$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AC}$D.$\overrightarrow{AG}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)的导数f′(x)存在导数,记f′(x)的导数为fn(x).如果f(x)对任意x∈(a,b),都有fn(x)<0成立,则f(x)有如下性质:
f($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$)≥$\frac{f({x}_{1})+f({x}_{2})+…+f({x}_{n})}{n}$.其中n∈N*,x1,x2,…,xn∈(a,b).若f(x)=sinx,则fn(x)=-sinx;根据上述性质推断:当x1+x2+x3=π且x1,x2,x3∈(0,π)时,根据上述性质推断:sinx1+sinx2+sinx3的最大值为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ),其中A>0,ω>0,0<φ<π,且函数f(x)的最小正周期为$\frac{π}{2}$.
(1)若函数f(x)在x=$\frac{π}{3}$处取到最小值-2,求函数f(x)的解析式;
(2)若将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移$\frac{π}{6}$个单位,得到的函数图象关于y轴对称,求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在三棱锥P-ABC中,AB⊥BC,PA=PB,E为AC的中点
(1)求证:PE⊥AB
(2)设平面PAB⊥平面ABC,PB=BC=2,AC=4,求二面角B-PA-C的平面角的正弦值.

查看答案和解析>>

同步练习册答案