精英家教网 > 高中数学 > 题目详情
14.执行如图所示的程序框图,则输出的结果是(  )
A.sinxB.-sinxC.cosxD.-cosx

分析 模拟执行程序,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,依次写出每次循环得到的i,fi(x)的值,根据其取值的周期性即可得解.

解答 解:模拟程序的运行,可得
f0(x)=cosx,i=0
执行循环体,i=1,f1(x)=-sinx,
不满足条件i=2016,执行循环体,i=2,f2(x)=-cosx,
不满足条件i=2016,执行循环体,i=3,f3(x)=sinx,
不满足条件i=2016,执行循环体,i=4,f4(x)=cosx,
不满足条件i=2016,执行循环体,i=5,f5(x)=-sinx,

观察规律可知,fi(x)的取值以4为周期重复出现,且2016=504×4,
可得:当i=2016时,f2016(x)=cosx,
此时,满足条件i=2016,退出循环,输出f2016(x)的值为cosx.
故选:C.

点评 根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知数列{an}是等差数列,其前n项和为Sn,若a3+a4+a5=9,则S7=(  )
A.21B.28C.35D.42

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设x,y满足不等式组$\left\{\begin{array}{l}{x+y-6≤0}\\{2x-y-1≤0}\\{3x-y-2≥0}\end{array}\right.$,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围为[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合{a,b,c}={0,1,3},且下列三个关系:①a≠3;②b=3;③c≠0有且只有一个正确,则100a+10b+c的值为(  )
A.130B.103C.301D.310

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某产品的广告费用x与销售额y的不完整统计数据如表:
广告费用x(万元)345
销售额y(万元)2228m
若已知回归直线方程为$\widehat{y}$=9x-6,则表中m的值为(  )
A.40B.39C.38D.37

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左,右焦点分别为F1、F2,$\overrightarrow{A{F}_{2}}$=λ$\overrightarrow{{F}_{2}B}$(λ>0),其中A、B为双曲线右支上的两点.若在△AF1B中,∠F1AB=90°,|F1B|=$\sqrt{2}$|AB|,则双曲线C的离心率的平方的值为(  )
A.5+2$\sqrt{2}$B.5-2$\sqrt{2}$C.6-$\sqrt{2}$D.6+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C:y2=2px(p>0)的焦点F和椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的右焦点重合,直线l过点F交抛物线于A、B两点.
(1)求抛物线C的过程;
(2)若直线l交y轴于点M,且$\overrightarrow{MA}$=m$\overrightarrow{AF}$,$\overrightarrow{MB}$=n$\overrightarrow{BF}$,对任意的直线l,m+n是否为定值?若是,求出m+n的值;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\frac{x-4}{\sqrt{-{x}^{2}+5x-6}}$的定义域是(  )
A.(4,+∞)B.(2,3)C.(-∞,2)∪(3,+∞)D.(-∞,2)∪(2,3)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某零件的三视图如图所示,现用一长方体原件切割成此零件,若产生的废料最少,则原件的体积为(  )
A.πB.2C.4D.8

查看答案和解析>>

同步练习册答案