精英家教网 > 高中数学 > 题目详情

如图,直线l1l2相交于点Ml1l2,点Nl1.以AB为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程

曲线段C的方程为y2=8x(1≤x≤4,y>0).


解析:

如图建立坐标系,以l1x轴,MN的垂直平分线为y轴,点O为坐标原点.

依题意知:曲线段C是以点N为焦点,以l2为准线的抛物线的一段,其中AB分别为C的端点.

设曲线段C的方程为,y2=2pxp>0),(xAxxBy>0)

其中xAxB分别为AB的横坐标,p=|MN|.所以M,0),N,0)

由|AM|=,|AN|=3得:

xA2+2pxA=17             ①

xA2+2pxA=9               ②

由①②两式联立解得xA,再将其代入①式并由p>0,解得

因为△AMN是锐角三角形,所以xA,故舍去

所以p=4,xA=1.由点B在曲线段C上,得xB=|BN|=4.

综上得曲线段C的方程为y2=8x(1≤x≤4,y>0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A,B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=
17
,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直线l1和l2相交于点M且l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=
17
,|AN|=3,且|BN|=6.
(1)曲线段C是哪类圆锥曲线的一部分?并建立适当的坐标系,求曲线段C所在的圆锥曲线的标准方程;
(2)在(1)所建的坐标系下,已知点P(m,n)在曲线段C上,直线l:mx+ny=1,求直线l被圆x2+y2=1截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学选修2-1 2.4抛物线练习卷(解析版) 题型:解答题

如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.(14分)

 

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学选修1-1 2.3抛物线练习卷(解析版) 题型:解答题

如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.(14分)

 

查看答案和解析>>

同步练习册答案