精英家教网 > 高中数学 > 题目详情

如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.(14分)

 

【答案】

【解析】主要考查抛物线定义、标准方程、待定系数法。

如图建立坐标系,以l1为x轴,MN的垂直平分线为y轴,点O为坐标原点.由题意可知:曲线C是以点N为焦点,以l2为准线的抛物线的一段,其中A、B分别为C的端点.

设曲线段C的方程为

其中分别为A、B的横坐标,

所以,. 由          ①

           ②

联立①②解得.将其代入①式并由p>0解得,或

因为△AMN为锐角三角形,所以,故舍去.  ∴p=4,

由点B在曲线段C上,得.综上得曲线段C的方程为

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A,B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=
17
,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直线l1和l2相交于点M且l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=
17
,|AN|=3,且|BN|=6.
(1)曲线段C是哪类圆锥曲线的一部分?并建立适当的坐标系,求曲线段C所在的圆锥曲线的标准方程;
(2)在(1)所建的坐标系下,已知点P(m,n)在曲线段C上,直线l:mx+ny=1,求直线l被圆x2+y2=1截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直线l1l2相交于点Ml1l2,点Nl1.以AB为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学选修2-1 2.4抛物线练习卷(解析版) 题型:解答题

如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.(14分)

 

查看答案和解析>>

同步练习册答案