精英家教网 > 高中数学 > 题目详情
已知在函数f(x)y=
3
sin
πx
R
图象上,相邻的一个最大值点与一个最小值点恰好在圆x2+y2=R2上,则f(x)的最小正周期为(  )
A、1B、2C、3D、4
分析:先用R表示出周期,得到最大值点和最小值点的坐标后,代入到圆的方程可求出R的值,最后可得答案.
解答:解:∵x2+y2=R2,∴x∈[-R,R].
∵函数f(x)的最小正周期为2R,
∴最大值点为(
R
2
3
),相邻的最小值点为(-
R
2
,-
3
),
代入圆方程,得R=2,∴T=4.
故选D.
点评:本题主要考查三角函数的性质--周期性.属基础题.三角函数两相邻的最大值与最小值正好等于半个周期.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在函数f(x)=-x3+ax2+bx+c图象上的点P(1,-2)处的切线方程为y=-3x+1.
(1)若函数f(x)在x=-2时有极值,求f(x)的表达式;
(2)在(1)的条件下,若f(x)=k在区间[-3,1]上有两个不同的解,求实数k的取值范围;
(3)函数f(x)在区间[-2,0]上单调递增,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在函数f(x)=-x3+ax2+bx+c图象上的点P(1,-2)处的切线方程为y=-3x+1.
(1)若函数f(x)在x=-2时有极值,求f(x)的表达式;
(2)在(1)的条件下,若f(x)=k在区间[-3,1]上有两个不同的解,求实数k的取值范围;
(3)函数f(x)在区间[-2,0]上单调递增,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:兰州一模 题型:单选题

已知在函数f(x)y=
3
sin
πx
R
图象上,相邻的一个最大值点与一个最小值点恰好在圆x2+y2=R2上,则f(x)的最小正周期为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省湖州市菱湖中学高二(下)3月月考数学试卷(理科)(解析版) 题型:解答题

已知在函数f(x)=-x3+ax2+bx+c图象上的点P(1,-2)处的切线方程为y=-3x+1.
(1)若函数f(x)在x=-2时有极值,求f(x)的表达式;
(2)在(1)的条件下,若f(x)=k在区间[-3,1]上有两个不同的解,求实数k的取值范围;
(3)函数f(x)在区间[-2,0]上单调递增,求实数b的取值范围.

查看答案和解析>>

同步练习册答案