精英家教网 > 高中数学 > 题目详情
10.某高校有甲、乙、丙三个数学建模兴趣班,甲、乙两班各有45人,丙班有60人,为了解该校数学建模成果,采用分层抽样从中抽取一个容量为10的样本,则在乙班抽取的人数为((  )
A.2B.3C.4D.5

分析 根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在乙班抽取的人数.

解答 解:根据题意得,用分层抽样在各层中的抽样比为$\frac{10}{45+45+60}$=$\frac{1}{15}$,
则在乙班抽取的人数是45×$\frac{1}{15}$=3人,
故选:B.

点评 本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在各层中抽取的个体数目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.
(1)求a的值及函数f(x)的极值;
(2)设g(x)=ex-x2,当x>0时,g(x)>0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,正方形的四个顶点为O(0,0),A(1,0),B(1,1).C(0,1),曲线y=x2经过点B,现将一质点随机投入正方形中,则质点落在图中阴影区域的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=x2-mln (2x+1),其中x∈(-$\frac{1}{2}$,1],且m>0.
(Ⅰ)若函数f(x)在区间(-$\frac{1}{2}$,1]上是减函数,求实数m的取值范围;
(Ⅱ)函数f(x)是否存在最小值,若存在最小值,求出取最小值时的x的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,bcosC+ccosB=$\sqrt{3}$R(R为△ABC外接圆半径)且a=2,b+c=4,则△ABC的面积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在等差数列{an}中,前n项和为Sn,若a1>0且3a5=5a8,则数列{an}前(  )项和最大.
A.10B.11C.11或12D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=5°x+20°,g(x)=$\frac{π}{30}$x+$\frac{π}{6}$,若f(x+T)与f(x)终边相同,g(x+T)与g(x)终边也相同,求非零常数T的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,若a5=6,a8=15,则a14等于(  )
A.32B.33C.-33D.29

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点A(1,2),B(-1,3),C(2,1),则$\overrightarrow{AB}$•(2$\overrightarrow{AC}$+$\overrightarrow{BC}$)=-14.

查看答案和解析>>

同步练习册答案