精英家教网 > 高中数学 > 题目详情
1.如图,正方形的四个顶点为O(0,0),A(1,0),B(1,1).C(0,1),曲线y=x2经过点B,现将一质点随机投入正方形中,则质点落在图中阴影区域的概率是$\frac{1}{3}$.

分析 本题考查的知识点是几何概型的意义,关键是要找出图中阴影部分的面积,并将其与正方形面积一块代入几何概型的计算公式进行求解.

解答 解:由已知易得:S正方形=1
S阴影=∫01(x2)dx=$\frac{1}{3}$
故质点落在图中阴影区域的概率P=$\frac{1}{3}$
故答案为:$\frac{1}{3}$.

点评 几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在下列各命题中,正确命题的是(  )
A.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,$\overrightarrow{a}$=±$\overrightarrow{b}$B.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$=$\overrightarrow{b}$
C.若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$D.若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$($\overrightarrow{b}$≠0),则$\overrightarrow{a}$∥$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若f(x)=ax3+bx2+cx+d(a>0)为增函数,则(  )
A.b2-4ac>0B.b>0,c>0C.b=0,c>0D.b2-3ac≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知sinα=$\frac{4}{5}$,且α为锐角,则cos$\frac{α}{2}$=(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{{3\sqrt{5}}}{5}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,B=120°,AC=7,AB=5,则△ABC的面积为(  )
A.15$\sqrt{3}$B.3$\sqrt{3}$C.$\frac{{15\sqrt{3}}}{4}$D.$\frac{{15\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为4,且点(-2,$\sqrt{2}$)在椭圆C上.
(1)求椭圆C的方程;
(2)若点B为椭圆的下顶点,直线l与椭圆C交于不同的两点P,Q(异于点B),直线BQ与BP的斜率之和为2,试问直线l是否经过定点?若经过定点,请给出证明,并求出该定点;若不经过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,正方形ABCD的边长为1,P、Q分别为AB,DA上的动点,设AP=x,AQ=y.
(1)当x=$\frac{2}{3}$,y=$\frac{1}{2}$,求∠PCQ的大小;
(2)若△APQ的周长为2,
①求x,y之间的函数关系式y=f(x);
②设△PCQ的面积为S,求S的最小值.
(参考公式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某高校有甲、乙、丙三个数学建模兴趣班,甲、乙两班各有45人,丙班有60人,为了解该校数学建模成果,采用分层抽样从中抽取一个容量为10的样本,则在乙班抽取的人数为((  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=loga(x-1)+1(a>0,且a≠1)的图象过定点(b,f(b)),则(x2-3x+b)5的展开式中,x的系数是(  )
A.-240B.-120C.0D.120

查看答案和解析>>

同步练习册答案