精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,已知acosC-bcosC=ccosB-ccosA,且C=120°.
(1)求角A;
(2)若a=2,求c.
分析:利用正弦定理化简已知的等式,整理后利用两角和与差的正弦函数公式化简后,再利用诱导公式化简,根据C的度数,求出A与B的度数,得到A与B的度数相等,利用等角对等边得到a=b,由a的值求出b的值,然后由a,b及cosC的值,利用余弦定理即可求出c的值.
解答:解:由正弦定理,得:sinAcosC-sinBcosC=sinCcosB-sinCcosA,
整理得:sinAcosC+sinCcosA=sinCcosB+sinBcosC,即sin(A+C)=sin(B+C),
∴sinB=sinA,又C=120°,
∴B=A=30°,
∵a=2,∴b=2,
∴由余弦定理得:a2+b2-2abcosC=4+4-2×2×2×(-
1
2
)=12,
∴c=2
3
点评:此题考查了正弦、余弦定理,两角和与差的正弦函数公式,诱导公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案