精英家教网 > 高中数学 > 题目详情
垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线,求画图详解得到双曲线.
考点:双曲线的标准方程
专题:圆锥曲线的定义、性质与方程
分析:首先当平面与母线平行时得到抛物线,当平面与地面形成一个夹角时得到椭圆,当平面和地面垂直时得到双曲线.
解答: 解:如图所示:
点评:本题考查的知识要点:圆锥曲线的形成,平面与椎体的位置在如何放置时得到那种曲线.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=3x,则f(-2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:lg3•lg5<(lg4)2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义数列如下:a1=2,an+1=an2-an+1,n∈N*.证明:
(Ⅰ)对于n∈N*,恒有an>1成立;
(Ⅱ)当n>2且n∈N*,有an+1=anan-1…a2a1+1成立;
(Ⅲ)1-
1
22014
1
a1
+
1
a2
+…+
1
a2014
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,侧棱SA⊥底面ABCD,AD∥BC,∠ABC=90°,SA=AB=BC=2,AD=1.M是棱SB的中点.
(1)求证:AM∥面SCD;
(2)设点N是线段CD上的一点,且
AN
AD
方向上的射影为a,记MN与面SAB所成的角为θ,问:a为何值时,sinθ取最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线AB与CD是异面直线,求证:直线AC与BD也是异面直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①有理数是实数;      
②有些平行四边形不是菱形;
③?x∈R,x2-2x>0;     
④?x∈R,2x+1为奇数;
以上命题的否定为真命题的序号依次是 (  )
A、①④B、①②④
C、①②③④D、③

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PB为△ABC外接圆O的切线,BD平分∠PBC,交圆O于D,C,D,P共线.若AB⊥BD,PC⊥PB,PD=1,则圆O的半径是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义函数f(x)=
4-8|x-
3
2
|,1≤x≤2
1
2
f(
x
2
),x>2
,则函数g(x)=xf(x)-6在区间[1,64]内所有的零点的和为(  )
A、192
B、189
C、
189
4
D、
189
2

查看答案和解析>>

同步练习册答案