精英家教网 > 高中数学 > 题目详情

【题目】把三盆不同的兰花和4盆不同的玫瑰花摆放在右图图案中的1,2,3,4,5,6,7所示的位置上,其中三盆兰花不能放在一条直线上,则不同的摆放方法为(

A.2680种
B.4320种
C.4920种
D.5140种

【答案】B
【解析】解:7个点可组成的三角形有C73﹣5=30∵三盆兰花不能放在一条直线上,∴可放入三角形三个角上,有C301A33=180中放法
再放4盆不同的玫瑰花,没有限制,放在剩余4个位置,有A44=24中放法
∴不同的摆放方法为180×24=4320种.
故选B
因为三盆兰花不能放在一条直线,所以可先放在一个三角形的三个角上,分析图中7个点可组成多少个三角形,7个点中任选3个,再去掉共线的即可,然后,任取一个三角形,放三盆兰花,剩下的位置放4盆不同的玫瑰花即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知全集U=R,若集合A={y|y=3﹣2x},B={x| ≤0},则A∩UB=(
A.(﹣∞,0)∪[2,3)
B.(﹣∞,0]∪(2,3)
C.[0,2)
D.[0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】王老师的班上有四个体育健将甲、乙、丙、丁,他们都特别擅长短跑,在某次运动会上,他们四人要组成一个米接力队,王老师要安排他们四个人的出场顺序,以下是他们四人的对话:

甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;

丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒;

王老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求, 据此我们可以断定,在王老师安排的出场顺序中,跑第三棒的人是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为 ,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.
(Ⅰ)求椭圆E的方程;
(Ⅱ)判断ABCD能否为菱形,并说明理由.
(Ⅲ)当ABCD的面积取到最大值时,判断ABCD的形状,并求出其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车忽如一夜春风来,遍布了各个城市的大街小巷.为了解共享单车在市的使用情况,某调研机构在该市随机抽取了位市民进行调查,得到的列联表如下:

经常使用

偶尔或不用

合计

岁及以下的人数

岁以上的人数

合计

(1)根据以上数据,能否在犯错误的概率不超过的前提下认为使用共享单车的情况与年龄有关?

(2)现从所抽取的岁以上的市民中利用分层抽样的方法再抽取位市民,从这位市民中随机选出位市民赠送礼品,求选出的位市民中至少有位市民经常使用共享单车的概率.

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 为等边三角形,且平面平面.

(Ⅰ)证明:

(Ⅱ)若棱锥的体积为,求该四棱锥的侧面积.

【答案】(Ⅰ)证明见解析;(Ⅱ) .

【解析】试题分析】(I)的中点为,连接.利用等腰三角形的性质和矩形的性质可证得,由此证得平面,故,故.(II) 可知是棱锥的高,利用体积公式求得,利用勾股定理和等腰三角形的性质求得的值,进而求得面积.

试题解析】

证明:(Ⅰ)取的中点为,连接

为等边三角形,∴.

底面中,可得四边形为矩形,∴

,∴平面

平面,∴.

,所以.

(Ⅱ)由面

平面,所以为棱锥的高,

,知

.

由(Ⅰ)知,∴.

.

,可知平面,∴

因此.

的中点,连结,则

.

所以棱锥的侧面积为.

型】解答
束】
20

【题目】已知圆经过椭圆 的两个焦点和两个顶点,点 是椭圆上的两点,它们在轴两侧,且的平分线在轴上, .

(Ⅰ)求椭圆的方程;

(Ⅱ)证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是 . (写出所有正确说法的序号)
①若p是q的充分不必要条件,则p是q的必要不充分条件;
②命题“x∈R,x2+1>3x”的否定是“x∈R,x2+1<3x”;
③设x,y∈R.命题“若xy=0,则x2+y2=0”的否命题是真命题;
④若

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCD﹣A1B1C1D1底面是边长为1的正方形,高AA1= ,点A是平面α内的一个定点,AA1与α所成角为 ,点C1在平面α内的射影为P,当四棱柱ABCD﹣A1B1C1D1按要求运动时(允许四棱柱上的点在平面α的同侧或异侧),点P所经过的区域的面积=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知存在常数,那么函数上是减函数,在上是增函数,再由函数的奇偶性可知在上是增函数,在上是减函数.

(1)判断函数的单调性,并证明:

(2)将前述的函数推广为更为一般形式的函数,使都是的特例,研究的单调性(只须归纳出结论,不必推理证明)

查看答案和解析>>

同步练习册答案