精英家教网 > 高中数学 > 题目详情
2.直线y=kx+1与双曲线x2-4y2=16只有一个公共点,则k的取值范围是{±1,±$\frac{\sqrt{30}}{12}$}.

分析 由直线y=kx+1与双曲线x2-4y2=16,得(1-4k2)x2-8kx-20=0,则该方程只有一解,分1-4k2=0,1-4k2≠0两种情况讨论可解得k值.

解答 解:由直线y=kx+1与双曲线x2-4y2=16,得(1-4k2)x2-8kx-20=0,
①当1-4k2=0,即k=±$\frac{1}{2}$时,x=±5,
此时直线与双曲线相交,只有一个公共点;
②当1-4k2≠0,即k≠±$\frac{1}{2}$时,
△=64k2-4(1-4k2)(-20)=0,即4k2=5,解得k=±$\frac{\sqrt{30}}{12}$,
此时直线与双曲线相切,只有一个公共点;
综上,k的取值范围为{±1,±$\frac{\sqrt{30}}{12}$}.
故答案为:{±1,±$\frac{\sqrt{30}}{12}$}.

点评 本题考查直线与圆锥曲线的位置关系,考查方程思想,考查函数解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知直线l:$\left\{\begin{array}{l}{x=1+t}\\{y=-\frac{1}{2}t}\end{array}\right.$(t为参数),曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)
(1)写出直线l和曲线C的普通方程;
(2)求直线l被曲线C截得的线段中点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知α∈(π,$\frac{3π}{2}$),tanα=2,则cosα=(  )
A.$\frac{{\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$-\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过椭圆$\frac{x^2}{4}+\frac{y^2}{3}$=1的右焦点F作两条互相垂直的弦AB,CD,若弦AB,CD的中点分别为M,N,则直线MN恒过定点$({\frac{4}{7},\;0})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-2x+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个极值点x1,x2(x1<x2),且不等式f(x1)≥mx2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=(x2-2ax)lnx+bx2,a,b∈R.
(1)当a=1,b=-1时,设g(x)=(x-1)2lnx+x,求证:对任意的x>1,g(x)-f(x)>x2+x+e-ex
(2)当b=2时,若对任意x∈[1,+∞),不等式2f(x)>3x2+a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}为等差数列,若$\frac{{a}_{13}}{{a}_{12}}$<-1,且它们的前n项和Sn有最大值,则使得Sn>0的n的最大值为(  )
A.21B.22C.23D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设定义在(0,+∞)上的单调函数f(x),对任意的x∈(0,+∞)都有f[f(x)-log2x]=3.若方程f(x)+f′(x)=a有两个不同的实数根,则实数a的取值范围是(  )
A.(1,+∞)B.(2+$\frac{1}{ln2}$,+∞)C.(3-$\frac{1}{2ln2}$,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a为实数,若复数z=(a2-1)+(a+1)i为纯虚数,则$\frac{{a+{i^3}}}{1+i}$的值为(  )
A.1B.-1C.iD.-i

查看答案和解析>>

同步练习册答案