精英家教网 > 高中数学 > 题目详情
设x0是函数f(x)=3x+3x-8的一个零点,且x0∈(k,k+1),k∈Z,则k=
 
考点:函数零点的判定定理
专题:函数的性质及应用
分析:由函数的解析式可得f(1)<0,f(2)>0,且函数在R上是增函数,故函数f(x)在(1,2)上存在唯一零点,从而求得k的值.
解答: 解:由函数的解析式可得f(1)=3+3-8=-2<0,f(2)=9+6-8=7>0,
且函数在R上是增函数,故函数f(x)在(1,2)上存在唯一零点,
故k=1,
故答案为:1.
点评:本题主要考查函数的零点的判定定理的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(1,5,-2)
b
=(m,2,m+2)
,若
a
b
,则m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…
若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前200个圈中的●的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)和y=g(x)的图象关于y轴对称,且f(x)=2x2+4x-2.
(Ⅰ)求函数y=g(x)的解析式;
(Ⅱ)当k<
1
2
时,解不等式
4
f(x)+g(x)
k
x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,1),
b
=(-1,1)
m
=
a
b
n
=2
a
+
b

(1)若
m
n
,求实数λ的值;
(2)若
m
n
,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求满足(
1
4
)x2-8
>4-2x的x的取值集合是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了得到函数y=3(
1
3
)x
的图象,可将函数y=(
1
3
)x
的图象向
 
平移
 
个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(
1
2
)x-2  ,x≤0
x2-2x  ,x>0

(1)在给出的平面直角坐标系中作出函数y=f(x)的图象;
(2)根据图象,写出该函数的单调区间;
(3)若集合A={x∈R|f(x)=a}中恰有三个元素,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

用长、宽分别是12与8的矩形硬纸卷成圆柱的侧面,则圆柱的体积为
 

查看答案和解析>>

同步练习册答案