精英家教网 > 高中数学 > 题目详情

【题目】已知某民族品牌手机生产商为迎合市场需求,每年都会研发推出一款新型号手机.该公司现研发了一款新型智能手机并投入生产,生产这款手机的月固定成本为80万元,每生产1千台,须另投入27万元, 设该公司每月生产千台并能全部销售完,每1千台的销售收入为万元,且.为更好推广该产品,手机生产商每月还支付各类广告费用20万元.

(Ⅰ)写出月利润(万元)关于月产量(千台)的函数解析式;

(Ⅱ)当月产量为多少千台时,该公司在这一型号的手机生产中所获月利润最大?

【答案】(Ⅰ)(Ⅱ)9千台

【解析】

(Ⅰ)首先计算出总成本,当时, 时,.即可得出函数的解析式.

(Ⅱ)利用导数研究函数的单调性,然后求解函数的最值即可得.

解:(Ⅰ)设月产量(千台),则总成本为万元,则

1千台的销售收入为万元且

则当时,

则当时,

综上可得

(Ⅱ)①当时,由

得当时,,单调递增;

时,,单调递减.

②当 时,

当且仅当时取最大值

综上,当月产量为9千台时,该公司在这一型号的手机生产中所获月利润最大,利润额为万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:

售出水量(单位:箱)

7

6

6

5

6

收入(单位:元)

165

142

148

125

150

学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.

(1)若成线性相关,则某天售出9箱水时,预计收入为多少元?

(2)假设甲、乙、丙三名学生均获奖,且各自获一等奖和二等奖的可能性相同,求三人获得奖学金之和不超过1000元的概率.

附:回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为促进职工业务技能提升,对该单位120名职工进行一次业务技能测试,测试项目共5项.现从中随机抽取了10名职工的测试结果,将它们编号后得到它们的统计结果如下表(表1)所示(“√”表示测试合格,“×”表示测试不合格).

表1:

编号\测试项目

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

规定:每项测试合格得5分,不合格得0分.

(1)以抽取的这10名职工合格项的项数的频率代替每名职工合格项的项数的概率.

①设抽取的这10名职工中,每名职工测试合格的项数为,根据上面的测试结果统计表,列出的分布列,并估计这120名职工的平均得分;

②假设各名职工的各项测试结果相互独立,某科室有5名职工,求这5名职工中至少有4人得分不少于20分的概率;

(2)已知在测试中,测试难度的计算公式为,其中为第项测试难度,为第项合格的人数,为参加测试的总人数.已知抽取的这10名职工每项测试合格人数及相应的实测难度如下表(表2):

表2:

测试项目

1

2

3

4

5

实测合格人数

8

8

7

7

2

定义统计量,其中为第项的实测难度,为第项的预测难度().规定:若,则称该次测试的难度预测合理,否则为不合理,测试前,预估了每个预测项目的难度,如下表(表3)所示:

表3:

测试项目

1

2

3

4

5

预测前预估难度

0.9

0.8

0.7

0.6

0.4

判断本次测试的难度预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求直线的普通方程及曲线的直角坐标方程;

(2)设点,直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体中,四边形为矩形,二面角.

(1)求证:平面

(2)为线段上的点,当时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆经过伸缩变换,后得到曲线以坐标原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线l的极坐标方程为

求曲线的直角坐标方程及直线l的直角坐标方程;

上求一点M,使点M到直线l的距离最小,并求出最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆锥(其中为顶点,为底面圆心)的侧面积与底面积的比是,则圆锥与它外接球(即顶点在球面上且底面圆周也在球面上)的体积比为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】aR,数列{an}满足a1aan+1an﹣(an23,则(  )

A.a4时,a10210B.时,a102

C.时,a10210D.时,a102

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某高校综合评价有两步:第一步是材料初审,若材料初审不合格,则不能进入第二步面试;若材料初审合格,则进入第二步面试.只有面试合格者,才能获得该高校综合评价的录取资格,现有ABC三名学生报名参加该高校的综合评价,假设ABC三位学生材料初审合格的概率分别是;面试合格的概率分别是.

1)求AB两位考生有且只有一位考生获得录取资格的概率;

2)记随机变量XABC三位学生获得该高校综合评价录取资格的人数,求X的概率分布与数学期望.

查看答案和解析>>

同步练习册答案