精英家教网 > 高中数学 > 题目详情

【题目】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
A配方的频数分布表

指标值分组

[90,94)

[94,98)

[98,102)

[102,106)

[106,110]

频数

8

20

42

22

8

B配方的频数分布表

指标值分组

[90,94)

[94,98)

[98,102)

[102,106)

[106,110]

频数

4

12

42

32

10


(1)分别估计用A配方,B配方生产的产品的优质品率;
(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=
估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.

【答案】
(1)解:由试验结果知,用A配方生产的产品中优质品的频率为 =0.3,

所以用A配方生产的产品的优质品率的估计值为0.3.

由试验结果知,用B配方生产的产品中优质品的频率为 =0.42,

所以用B配方生产的产品的优质品率的估计值为0.42


(2)解:由条件知,用B配方生产的一件产品的利润大于0,当且仅当其质量指标值t≥94.

由试验结果知,质量指标值t≥94的频率为0.96.

所以用B配方生产的一件产品的利润大于0的概率估计值为0.96.

用B配方生产的产品平均一件的利润为

×[4×(﹣2)+54×2+42×4]=2.68(元)


【解析】(1)由试验结果先求出用A配方生产的产品中优质品的频率和用B配方生产的产品中优质品的频率,由此能分别估计用A配方,B配方生产的产品的优质品率.(2)由条件知,用B配方生产的一件产品的利润大于0,当且仅当其质量指标值t≥94.由试验结果知,质量指标值t≥94的频率为0.96.由此能求出用B配方生产的产品平均一件的利润.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 =(cosα,sinα), =(cosβ,sinβ),其中0<α<β<π.
(1)求证: 互相垂直;
(2)若k ﹣k 的长度相等,求β﹣α的值(k为非零的常数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某军工企业生产一种精密电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)= 其中x是仪器的月产量.
(1)将利润表示为月产量的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP⊥AC;②EP∥BD;③EP∥面SBD;④EP⊥面SAC.中恒成立的为(

A.①③
B.③④
C.①②
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,求入射光线所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间上的函数满足,且当时,.

(1)求的值;

(2)证明:为单调增函数;

(3)若,求上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的不等式恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人各自独立地进行射击比赛,甲、乙两人各射击一次,击中目标的概率分别是 ,假设每次射击是否击中目标相互之间没有影响.
(1)求甲射击3次,至少有1次未击中目标的概率;
(2)求两人各射击3次,甲恰好击中目标2次且乙恰好击中目标1次的概率.

查看答案和解析>>

同步练习册答案