【题目】已知定义在区间上的函数满足,且当时,.
(1)求的值;
(2)证明:为单调增函数;
(3)若,求在上的最值.
【答案】(1)f(1)=0.(2)见解析(3)最小值为﹣2,最大值为3.
【解析】试题分析:(1)利用赋值法进行求 的值;
(2)根据函数的单调性的定义判断在上的单调性,并证明.
(3)根据函数单调性的性质,并利用赋值法可得函数的最值.
试题解析:(1)∵函数f(x)满足f(x1x2)=f(x1)+f(x2),
令x1=x2=1,则f(1)=f(1)+f(1),解得f(1)=0.
(2)证明:(2)设x1,x2∈(0,+∞),且x1>x2,则>1,
∴f()>0,
∴f(x1)﹣f(x2)=f(x2)﹣f(x2)=f(x2)+f()﹣f(x2)=f()>0,
即f(x1)>f(x2),
∴f(x)在(0,+∞)上的是增函数.
(3)∵f(x)在(0,+∞)上的是增函数.
若,则f()+f()=f()=﹣2,
即f(5)=f(1)=f()+f(5)=0,
即f(5)=1,
则f(5)+f(5)=f(25)=2,
f(5)+f(25)=f(125)=3,
即f(x)在上的最小值为﹣2,最大值为3.
科目:高中数学 来源: 题型:
【题目】给出以下四个命题:
(1)命题,使得,则,都有;
(2)已知函数f(x)=|log2x|,若a≠b,且f(a)=f(b),则ab=1;
(3)若平面α内存在不共线的三点到平面β的距离相等,则平面α平行于平面β;
(4)已知定义在上的函数 满足条件 ,且函数 为奇函数,则函数的图象关于点对称.
其中真命题的序号为______________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
A配方的频数分布表
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
频数 | 8 | 20 | 42 | 22 | 8 |
B配方的频数分布表
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
频数 | 4 | 12 | 42 | 32 | 10 |
(1)分别估计用A配方,B配方生产的产品的优质品率;
(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=
估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过曲线y=x2(x≥0)上某一点A作一切线l,使之与曲线以及x轴所围成的图形的面积为 ,试求:
(1)切点A的坐标;
(2)过切点A的切线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项a1= ,an+1= ,n=1,2,3,….
(1)证明:数列{ ﹣1}是等比数列;
(2)求数列{ }的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax+xlnx(a∈R)
(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;
(2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com