精英家教网 > 高中数学 > 题目详情

【题目】已知全集U=R,集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)UA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范围.

【答案】
(1)解:∵全集U=R,集合A={x|x<﹣2或3<x≤4},

UA={x|﹣2≤x≤3或x>4}


(2)解:由集合B中的不等式变形得:(x﹣5)(x+3)≤0,

解得:﹣3≤x≤5,即B={x|﹣3≤x≤5},

则A∪B={x|x≤5}


(3)解:∵B∩C=B,∴BC,

∵B={x|﹣3≤x≤5},C={x|x>a},

∴a<﹣3.


【解析】(1)由全集R及集合A,求出A的补集即可;(2)由A与B,求出两集合的并集即可;(3)根据B∩C=B,得到B为C的子集,由B与C求出a的范围即可.
【考点精析】认真审题,首先需要了解集合的并集运算(并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立),还要掌握集合的交集运算(交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】矩形中, ,点中点,沿折起至,如下图所示,点在面的射影落在上.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形,其中,等边所在平面与平面垂直.

(Ⅰ)点在棱上,且的重心,求证:平面

)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:已知函数f(x)在[m,n](m<n)上的最小值为t,若t≤m恒成立,则称函数f(x)在[m,n](m<n)上具有“DK”性质.例如函数 在[1,9]上就具有“DK”性质.
(1)判断函数f(x)=x2﹣2x+2在[1,2]上是否具有“DK”性质?说明理由;
(2)若g(x)=x2﹣ax+2在[a,a+1]上具有“DK”性质,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,动点满足.设动点的轨迹为.

(1)求动点的轨迹方程,并说明轨迹是什么图形;

(2)求动点与定点连线的斜率的最小值;

(3)设直线交轨迹两点,是否存在以线段为直径的圆经过?若存在,求出实数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)讨论函数极值点的个数,并说明理由;

(2)若 恒成立,求的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形中,相交于点.

(I)求证:平面

(II)当直线与平面所成角的大小为时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(log2x)=x2+2x.
(1)求函数f(x)的解析式;
(2)若方程f(x)=a2x﹣4在区间(0,2)内有两个不相等的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 是互不重合的直线, 是互不重合的平面,给出下列命题:

①若, ,则

②若 ,则

③若不垂直于,则不可能垂直于内的无数条直线;

④若 ,则

⑤若 ,则 .

其中正确的命题是__________.(填序号)

查看答案和解析>>

同步练习册答案