精英家教网 > 高中数学 > 题目详情
2.已知实数a>0且a≠1,设x=loga(a2+2),y=loga(a3+2),则x、y的大小关系是(  )
A.x>yB.x<yC.x=yD.不能确定

分析 对a分类讨论,利用函数y=ax与对数函数的单调性即可得出.

解答 解:当a>1时,∵a3>a2,∴a3+2>a2+2,∴loga(a3+2)>loga(a2+2);
当1>a>0时,∵a3<a2,∴a3+2<a2+2,∴loga(a3+2)>loga(a2+2).
故选:B.

点评 本题考查了指数函数与对数函数的单调性,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.直线l与椭圆$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知向量$\overrightarrow{m}$=(ax1,by1),$\overrightarrow{n}$=(ax2,by2),若$\overrightarrow{m}⊥\overrightarrow{n}$,且椭圆离心率e=$\frac{\sqrt{2}}{2}$,又椭圆经过点($\frac{\sqrt{2}}{2}$,1),0为坐标原点.
(1)求椭圆的方程;
(2)求证:△AOB的面积为定值.
(3)若直线l在y轴上截距为1,在y轴上是否存在点P(0,λ)使得以PA,PB为邻边的平行四边形是菱形,如果存在,求出λ的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,在(0,+∞)上为增函数的是(  )
A.y=-x2B.$y={(\frac{1}{π})^x}$C.$y={log_{\frac{1}{2}}}x$D.$y=\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有下列五个命题:
①在平面内,F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是椭圆;
②“在△ABC中,∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件;
③“x=0”是“x≥0”的充分不必要条件;
④已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$是空间的一个基底,则向量$\overrightarrow a+\overrightarrow b,\overrightarrow a-\overrightarrow b,\overrightarrow c$也是空间的一个基底;
⑤直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是$\frac{a}{b}=-3$.
其中真命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数$\frac{i}{2-i}$在平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的前n项和为Sn,Sn-2an=1(n∈N*),则数列{an}的通项公式an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C:x2+y2+Dx+Ey+9=0关于直线4x+y=0对称,且半径为2$\sqrt{2}$,圆心在第四象限.
(Ⅰ)求圆C的方程;
(Ⅱ)点M在圆C内部,且满足:$\left\{\begin{array}{l}{x≥2}\\{x-y-5≥0}\\{x+y+3≥0}\end{array}\right.$,求2x-y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某公司欲制作容积为16米3,高为1米的无盖长方体容器,已知该容器的底面造价是每平方米1000元,侧面造价是每平方米500元,记该容器底面一边的长为x米,容器的总造价为y元.
(1)试用x表示y;
(2)求y的最小值及此时该容器的底面边长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等差数列{an}中,a2=0,a4=4,则{an}的前5项和S5=(  )
A.20B.14C.12D.10

查看答案和解析>>

同步练习册答案