精英家教网 > 高中数学 > 题目详情

如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.

(Ⅰ)见解析(Ⅱ)(Ⅲ)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在长方体中,,的中点,的中点.

(I)求证:平面;
(II)求证:平面;
(III)若二面角的大小为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,的中点,

(1)求证:
(2)求证:
(3)求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设正四棱锥的侧面积为,若

(1)求四棱锥的体积;
(2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体,中,,点在棱AB上移动.

(1 )证明:
(2)当的中点时,求点到面的距离;  
(3)等于何值时,二面角的大小为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四边形ABCD是矩形,,F为CE上的点,且BF平面ACE,AC与BD交于点G

(1)求证:AE平面BCE
(2)求证:AE//平面BFD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,几何体中,四边形为菱形,,面∥面,都垂直于面,且的中点.

(Ⅰ)求证:为等腰直角三角形;
(Ⅱ)求证:∥面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是正方形,底面,且PA=AB.

(1)求证:BD平面PAC;
(2)求异面直线BC与PD所成的角.

查看答案和解析>>

同步练习册答案