如图,在长方体中,,为的中点,为的中点.
(I)求证:平面;
(II)求证:平面;
(III)若二面角的大小为,求的长.
(Ⅰ)详见解析;(Ⅱ)详见解析;(III).
解析试题分析:(Ⅰ)证明平面,就是证明平面,只需证明与平面内的两条直线垂直,即可证明平面;(Ⅱ)证明平面,只需证明与平面的一条直线平行,这里采用证明平行四边形的目的来证明与平面的一条直线平行;(III)借助空间向量法计算当为时的长.
试题解析:(I)证明:在长方体中,
因为平面,所以.
因为,所以四边形为正方形,因此,
又,所以平面.
又,且,
所以四边形为平行四边形.
又在上,所以平面.
4分
(II)取的中点为,连接.
因为为的中点,所以且,
因为为的中点,所以,
而,且,
所以,且,
因此四边形为平行四边形,
所以,而平面,[来源:Z,xx,k.Com]
所以平面.
9分
(III)如图,以为坐标原点,建立空间直角坐标系,设,
则,
故.
由(I)可知平面,所以是平面的一个法向量.
设平面的一个法向量为,则,
所以
令,则,所以.
设与所成的角为
科目:高中数学 来源: 题型:解答题
如图,四棱柱中,平面.
(Ⅰ)从下列①②③三个条件中选择一个做为的充分条件,并给予证明;
①,②;③是平行四边形.
(Ⅱ)设四棱柱的所有棱长都为1,且为锐角,求平面与平面所成锐二面角的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,边长为a的正方形ABCD中,点E、F分别在AB、BC上,且,将△AED、△CFD分别沿DE、DF折起,使A、C两点重合于点,连结A¢B.
(Ⅰ)判断直线EF与A¢D的位置关系,并说明理由;
(Ⅱ)求二面角F-A¢B-D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,平面四边形的4个顶点都在球的表面上,为球的直径,为球面上一点,且平面 ,,点为的中点.
(1) 证明:平面平面;
(2) 求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
正方形的边长为2,分别为边的中点,是线段的中点,如图,把正方形沿折起,设.
(1)求证:无论取何值,与不可能垂直;
(2)设二面角的大小为,当时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com