精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,底面ABCD是正方形,底面,且PA=AB.

(1)求证:BD平面PAC;
(2)求异面直线BC与PD所成的角.

(1)根据线面垂直的判定定理来得到,以及是解决的核心。
(2)45º.

解析试题分析:(1)
证明:∵

,  1分
为正方形,,  2分
是平面内的两条相交直线,
  4分
(2)解: ∵为正方形,
为异面直线所成的角,  6分
由已知可知,△为直角三角形,又

异面直线所成的角为45º.  8分
考点:异面直线所成的角,线面垂直
点评:主要是考查了空间中线面的垂直的证明,以及异面直线所成的角的求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在底面是直角梯形的四棱锥S-ABCD中,


(1)求四棱锥S-ABCD的体积;
(2)求证:
(3)求SC与底面ABCD所成角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知空间四边形中,的中点.

(Ⅰ)求证:平面CDE;
(Ⅱ)若G为的重心,试在线段AE上确定一点F,使得GF//平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在三棱锥PABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.

(1)求证:AB⊥平面PBC;
(2)设AB=BC,直线PA与平面ABC所成的角为45°,求异面直线AP与BC所成的角;
(3)在(2)的条件下,求二面角C-PA-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD的底面为正方形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,

(I) 求证:平面PAD⊥平面PCD
(II)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面是等腰梯形,分别是的中点.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCDPD=AB=2, E,F,G分别是PC,PD,BC的中点.

(1)求三棱锥E-CGF的体积;
(2)求证:平面PAB//平面EFG

查看答案和解析>>

同步练习册答案