精英家教网 > 高中数学 > 题目详情

已知点P在椭圆数学公式上,F1,F2是椭圆的两个焦点,△F1PF2是直角三角形,则这样的点P有


  1. A.
    2个
  2. B.
    4个
  3. C.
    6个
  4. D.
    8个
A
分析:如图,设椭圆的一个顶点是A,在三角形OAF1中,求得∠AOF2=45°,从而∠F1AF2=90°,根据当点P位于A(0,b)或(0,-b)处时,∠F1PF2最大.得到使得△F1PF2是直角三角形,则这样的点P有多少个即可.
解答:解:如图,设椭圆的一个顶点是A,
在三角形OAF1中,OA=,AF2=
∴cos∠AOF2=
∴∠AOF2=45°,
∴∠F1AF2=90°,
由图可知,,△F1PF2是直角三角形,则这样的点P有两个(即下下两个顶点)
故选A.
点评:本题考查椭圆的性质及其应用,难度不大,正确解题的关键是知道当点P位于A(0,b)或(0,-b)处时,∠F1PF2最大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1.(a>b>0)
,其中短轴长和焦距相等,且过点M(2,
2
)

(1)求椭圆的标准方程;
(2)若P(x0,y0)在椭圆C的外部,过P做椭圆的两条切线PM、PN,其中M、N为切点,则MN的方程为
x0x
a2
+
y0y
b2
=1
.已知点P在直线x+y-4=0上,试求椭圆右焦点F到直线MN的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
2
3
,椭圆G上的点N到两焦点的距离之和为12,点A、B分别是椭圆G长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴的上方,PA⊥PF.
(1)求椭圆G的方程;
(2)求点P的坐标;
(3)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛一模)已知点M在椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点,若圆M与y轴相交于A,B两点,且△ABM是边长为
2
6
3
的正三角形.
(Ⅰ)求椭圆D的方程;
(Ⅱ)设P是椭圆D上的一点,过点P的直线l交x轴于点F(-1,0),交y轴于点Q,若
QP
=2
PF
,求直线l的斜率;
(Ⅲ)过点G(0,-2)作直线GK与椭圆N:
3x2
a2
+
4y2
b2
=1
左半部分交于H,K两点,又过椭圆N的右焦点F1做平行于HK的直线交椭圆N于R,S两点,试判断满足|GH|•|GK|=3|RF1|•|F1S|的直线GK是否存在?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点M在椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点,若圆M与y轴相交于A,B两点,且△ABM是边长为
2
6
3
的正三角形.
(Ⅰ)求椭圆D的方程;
(Ⅱ)设P是椭圆D上的一点,过点P的直线l交x轴于点F(-1,0),交y轴于点Q,若
QP
=2
PF
,求直线l的斜率;
(Ⅲ)过点G(0,-2)作直线GK与椭圆N:
3x2
a2
+
4y2
b2
=1
左半部分交于H,K两点,又过椭圆N的右焦点F1做平行于HK的直线交椭圆N于R,S两点,试判断满足|GH|•|GK|=3|RF1|•|F1S|的直线GK是否存在?请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012年山东省青岛市高考数学一模试卷(文科)(解析版) 题型:解答题

已知点M在椭圆D:=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点,若圆M与y轴相交于A,B两点,且△ABM是边长为的正三角形.
(Ⅰ)求椭圆D的方程;
(Ⅱ)设P是椭圆D上的一点,过点P的直线l交x轴于点F(-1,0),交y轴于点Q,若,求直线l的斜率;
(Ⅲ)过点G(0,-2)作直线GK与椭圆N:左半部分交于H,K两点,又过椭圆N的右焦点F1做平行于HK的直线交椭圆N于R,S两点,试判断满足|GH|•|GK|=3|RF1|•|F1S|的直线GK是否存在?请说明理由.

查看答案和解析>>

同步练习册答案