精英家教网 > 高中数学 > 题目详情
14.设f(x)=ax2+bx+c,当|x|≤1时,总有|f(x)|≤1,求证:|f(2)|≤7.

分析 由已知可得|f(0)|≤1,|f(1)|≤1,|f(-1)|≤1,即|c|≤1,|a+b+c|≤1,|a-b+c|≤1,将|f(2)|=|4a+2b+c|化为:|3(a+b+c)+(a-b+c)-3c|≤|,用不等式的基本性质结合放缩法证明.

解答 证明:∵f(x)=ax2+bx+c,当|x|≤1时,总有|f(x)|≤1,
∴|f(0)|≤1,|f(1)|≤1,|f(-1)|≤1,
∴|c|≤1,|a+b+c|≤1,|a-b+c|≤1;
∵|f(2)|=|4a+2b+c|=|3(a+b+c)+(a-b+c)-3c|≤|3(a+b+c)|+|(a-b+c)|+|-3c|≤3+1+3=7,
∴|f(2)|≤7,
即:|f(2)|≤7.

点评 本考点考查二函数的最值及其几何意义,不等式的性质,以及不等式证明时常用的技巧放缩法的技巧.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求:(1)y=$\frac{4sinx+3}{sinx+2}$(2)y=$\frac{3sinx-3}{2cosx+10}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过极点,从极轴到直线l的角为$\frac{2π}{3}$的射线的极坐标方程为(  )
A.θ=$\frac{2π}{3}$B.θ=$\frac{2π}{3}$(ρ≥0)C.θ=$\frac{2π}{3}$(ρ∈R)D.θ=$\frac{5π}{3}$(ρ≥0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=cos(-$\frac{x}{2}$+$\frac{π}{2}$)的奇偶性是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数也是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某高校在2013年考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示,
(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
①已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙不同时进入第二轮面试的概率;
②若第三组被抽中的学生实力相当,在第二轮面试中获得优秀的概率均为$\frac{3}{4}$,设第三组中被抽中的学生有X名获得优秀,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.解不等式$\frac{{x}^{2}-2x-1}{x-1}$≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.解不等式:$\frac{{x}^{2}-3x-10}{{x}^{2}-7x+6}$>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式$\frac{x-1}{{x}^{2}-1}$>0的解是{x|x>1或-1<x<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.以矩形ABCD的边AB所在直线为x轴,矩形的对称轴为y轴.建立直角坐标系xOy.已知AB=2BC=4,抛物线y=ax2+c的顶点为矩形ABCD的中心,且经过C,D两点.
(1)求此抛物线的解析式:
(2)如图2,直线y=kx+2(k>0)与抛物线y=ax2+c交于E,F两点,与y轴交于P点,且PF=2PE,点Q为直线EF下方的抛物线上一动点,当△QEF面积最大时,求Q点坐标;
(3)如图3,M为y轴上一点,S为抛物线上一点,SN⊥x轴于N,且无论S在抛物线的什么位置,总有PM=PN,作∠MSN的平分线交y轴于G,当G点坐标为(0,-1),求S点坐标.

查看答案和解析>>

同步练习册答案