精英家教网 > 高中数学 > 题目详情
2.函数y=cos(-$\frac{x}{2}$+$\frac{π}{2}$)的奇偶性是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数也是偶函数

分析 由条件利用诱导公式化简函数的解析式,再利用正弦函数的奇偶性,判断函数f(x)的奇偶性.

解答 解:根据函数y=cos(-$\frac{x}{2}$+$\frac{π}{2}$)=sin$\frac{x}{2}$,可得该函数为奇函数,
故选:A.

点评 本题主要考查诱导公式、正弦函数的奇偶性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某高级中学有学生1000人,统计全体学生的年龄,得到如下数据:
年龄/岁1314151617181920合计
人数8402313152801071361000
从中任意选取1人,求:
(1)年龄大于18岁的概率;
(2)年龄不低于15岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=x3-3x,试分析:y=f(f(x))-c的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等比数列{an}中,
(1)a4=2,a7=8,求an
(2)a2+a5=18,a3+a6=9,an=1,求n;
(3)a3=2,a2+a4=$\frac{20}{3}$,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设U={a,b,c,d,e},A={a,b},B={b,c,d},分别求:∁UA∩∁UB,∁U(A∩B),∁U(A∪B),∁UA∪∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数y=x2-2tx+1,若-1≤x≤1,求y的最大、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设f(x)=ax2+bx+c,当|x|≤1时,总有|f(x)|≤1,求证:|f(2)|≤7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若定义在[1,16]上的函数f(x)=$\left\{\begin{array}{l}4-8\left|{x-\left.{\frac{3}{2}}\right|}\right.\;,\;1≤x≤2\\ \frac{1}{2}f(\frac{x}{2})\;\;\;\;\;,\;2<x≤16\end{array}$,则下列结论中错误的是(  )
A.函数f(x)的值域为[0,4]B.函数f(x)在[8,12]单调递增
C.关于x的方程2f(x)-1=0有6个根D.不等式xf(x)≤6恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.实数一元二次方程x2+ax+2b=0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求(a-1)2+(b-2)2的取值范围.

查看答案和解析>>

同步练习册答案