11£®Èô¶¨ÒåÔÚ[1£¬16]Éϵĺ¯Êýf£¨x£©=$\left\{\begin{array}{l}4-8\left|{x-\left.{\frac{3}{2}}\right|}\right.\;£¬\;1¡Üx¡Ü2\\ \frac{1}{2}f£¨\frac{x}{2}£©\;\;\;\;\;£¬\;2£¼x¡Ü16\end{array}$£¬ÔòÏÂÁнáÂÛÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®º¯Êýf£¨x£©µÄÖµÓòΪ[0£¬4]B£®º¯Êýf£¨x£©ÔÚ[8£¬12]µ¥µ÷µÝÔö
C£®¹ØÓÚxµÄ·½³Ì2f£¨x£©-1=0ÓÐ6¸ö¸ùD£®²»µÈʽxf£¨x£©¡Ü6ºã³ÉÁ¢

·ÖÎö °Ñx·Ö¶Î»¯¼ò·Ö¶Îº¯ÊýµÄ½âÎöʽ£¬µÃµ½ÔÚÃ¿Ò»Çø¼ä¶ÎÄÚº¯Êý¶¼ÊÇÒ»´Îº¯Êý£¬»­³öͼÏó£¬ÓÉͼ¿ÉµÃ´ð°¸£®

½â´ð ½â£ºµ±1¡Üx¡Ü$\frac{3}{2}$ʱ£¬f£¨x£©=4+8£¨x-$\frac{3}{2}$£©=8x-8£»
µ±$\frac{3}{2}$£¼x¡Ü2ʱ£¬f£¨x£©=4-8£¨x-$\frac{3}{2}$£©=-8x+16£®
µ±2£¼x¡Ü3ʱ£¬1£¼$\frac{x}{2}$¡Ü$\frac{3}{2}$£¬f£¨x£©=$\frac{1}{2}$f£¨$\frac{x}{2}$£©=$\frac{1}{2}$£¨8¡Á$\frac{x}{2}$-8£©=2x-4£»
µ±3£¼x¡Ü4ʱ£¬$\frac{3}{2}$£¼$\frac{x}{2}$¡Ü2£¬f£¨x£©=$\frac{1}{2}$£¨-8¡Á$\frac{x}{2}$+16£©=-2x+8£®
µ±4£¼x¡Ü6ʱ£¬2£¼$\frac{x}{2}$¡Ü3£¬f£¨x£©=$\frac{1}{2}$£¨2¡Á$\frac{x}{2}$-4£©=$\frac{1}{2}$x-2£»
µ±6£¼x¡Ü8ʱ£¬3£¼$\frac{x}{2}$¡Ü4£¬f£¨x£©=$\frac{1}{2}$£¨-2¡Á$\frac{x}{2}$+8£©=-$\frac{1}{2}$x+4£®¡­£®
»­³öº¯Êýf£¨x£©µÄͼÏó£¬ÓÉͼÏó¿ÉÖª£º
º¯Êýf£¨x£©µÄÖµÓòΪ[0£¬4]£¬AÕýÈ·£»
º¯Êýf£¨x£©ÔÚ[8£¬12]µ¥µ÷µÝÔö£¬BÕýÈ·£»
¹ØÓÚxµÄ·½³Ì2f£¨x£©-1=0ÓÐ7¸ö¸ù£¬C´íÎó£»
µ±1¡Üx¡Ü$\frac{3}{2}$ʱ£¬xf£¨x£©=x£¨8x-8£©=8x2-8x=$8£¨x-\frac{1}{2}£©^{2}-2$£¬µ±x=$\frac{3}{2}$ʱÓÐ×î´óÖµ6£»
µ±$\frac{3}{2}$£¼x¡Ü2ʱ£¬xf£¨x£©=x£¨-8x+16£©=-8x2+16x=-8£¨x-1£©2+8£¬µ±x=x=$\frac{3}{2}$ʱÓÐ×î´óÖµ6£®
¡­
¡à²»µÈʽxf£¨x£©¡Ü6ºã³ÉÁ¢£¬DÕýÈ·£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÁ˷ֶκ¯Êý½âÎöʽµÄÇ󷨣¬ÑµÁ·ÁËÊýÐνáºÏµÄ½âÌâ˼Ïë·½·¨£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Éèx£¬y£¬z¡Ý0£¬ÇÒx+y+z=1£¬ÇóÖ¤£º$\sqrt{16-48yz-15{x}^{2}}$+$\sqrt{16-48zx-15{y}^{2}}$+$\sqrt{16-48xy-15{z}^{2}}$¡Ý9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®º¯Êýy=cos£¨-$\frac{x}{2}$+$\frac{¦Ð}{2}$£©µÄÆæÅ¼ÐÔÊÇ£¨¡¡¡¡£©
A£®Ææº¯ÊýB£®Å¼º¯Êý
C£®·ÇÆæ·Çżº¯ÊýD£®¼ÈÊÇÆæº¯ÊýÒ²ÊÇżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®½â²»µÈʽ$\frac{{x}^{2}-2x-1}{x-1}$¡Ý0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®½â²»µÈʽ£º$\frac{{x}^{2}-3x-10}{{x}^{2}-7x+6}$£¾0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®½â²»µÈʽ£º$\frac{5-2x}{x+3}£¼0$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®²»µÈʽ$\frac{x-1}{{x}^{2}-1}$£¾0µÄ½âÊÇ{x|x£¾1»ò-1£¼x£¼1}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®º¯Êýy=x2+mx+9ÓÐÁ½¸öÁãµãÔÚÇø¼ä£¨2£¬4£©ÄÚ£¬ÇóʵÊýmµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼ÆË㣺$\frac{1}{1¡Á4}+\frac{1}{4¡Á7}+\frac{1}{7¡Á10}+$¡­+$\frac{1}{2014¡Á2017}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸