精英家教网 > 高中数学 > 题目详情

设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆
(1)求的值;
(2)证明:圆轴必有公共点;
(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.

(1)1   (2)见解析    (3)存在,

解析试题分析:(1)由抛物线方程求出焦点坐标,再由中点坐标公式求得FA的中点,由中点在抛物线上求得p的值;
(2)联立直线方程和抛物线方程,由直线和抛物线相切求得切点坐标,进一步求得Q的坐标(用含k的代数式表示),求得PQ的中点C的坐标,求出圆心到x轴的距离,求出,由半径的平方与圆心到x轴的距离的平方差的符号判断圆C与x轴的位置关系;
(3)法一、假设平面内存在定点M满足条件,设出M的坐标,结合(2)中求得的P,Q的坐标,求出向量 的坐标,由恒成立求解点M的坐标.
(1)利用抛物线的定义得,故线段的中点的坐标为,代入方程得,解得
(2)由(1)得抛物线的方程为,从而抛物线的准线方程为
得方程
由直线与抛物线相切,得      
,从而,即,       
,解得,         
的中点的坐标为
圆心轴距离
 
 
所圆与轴总有公共点.
(3)假设平面内存在定点满足条件,由抛物线对称性知点轴上,设点坐标为
由(2)知
 。
得,
所以,即
所以平面上存在定点,使得圆恒过点
考点:直线与圆锥曲线的综合问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设M、N为抛物线C:y=x2上的两个动点,过M、N分别作抛物线C的切线l1、l2,与x轴分别交于A、B两点,且l1与l2相交于点P,若|AB|=1.

(1)求点P的轨迹方程;
(2)求证:△MNP的面积为一个定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左、右焦点分别为,,右顶点为A,上顶点为B.已知=.
(1)求椭圆的离心率;
(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点,经过点的直线与该圆相切与点M,=.求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的焦点在x轴上,左右顶点分别为,上顶点为B,抛物线分别以A,B为焦点,其顶点均为坐标原点O,相交于直线上一点P.
(1)求椭圆C及抛物线的方程;
(2)若动直线与直线OP垂直,且与椭圆C交于不同的两点M,N,已知点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知两条抛物线,过原点的两条直线分别交于两点,分别交于两点.
(1)证明:
(2)过原点作直线(异于)与分别交于两点.记的面积分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为,定直线的方程为.动圆与圆外切,且与直线相切.
(1)求动圆圆心的轨迹的方程;
(2)直线与轨迹相切于第一象限的点, 过点作直线的垂线恰好经过点,并交轨迹于异于点的点,求直线的方程及的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过抛物线C:上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限.
(1)求抛物线C的方程及点M的坐标;
(2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,且直线AB过点(0,-1),求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,且离心率.
(1)求椭圆C的方程;
(2)已知过点的直线与该椭圆相交于A、B两点,试问:在直线上是否存在点P,使得是正三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案