精英家教网 > 高中数学 > 题目详情
5.设f(x)为奇函数,g(x)为偶函数,若f(x)+g(x)=x2-$\frac{1}{x}$,f(x)=-$\frac{1}{x}$.

分析 利用函数的奇偶性,列出方程,即可求解函数的解析式.

解答 解:函数f(x)、g(x)分别是奇函数、偶函数,且f(x)+g(x)=x2-$\frac{1}{x}$…①.
可得f(-x)+g(-x)=x2+$\frac{1}{x}$.即-f(x)+g(x)=x2+$\frac{1}{x}$…②
①-②可得:f(x)=-$\frac{1}{x}$.
故答案为:-$\frac{1}{x}$.

点评 本题考查函数的解析式的求法,函数的奇偶性的应用,考查计算能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e,D为右准线上一点.
(1)若e=$\frac{1}{2}$,点D的横坐标为4,求椭圆的方程;
(2)设斜率存在的直线l经过点P($\frac{3a}{4}$,0),且与椭圆交于A,B两点.若$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OD}$,DP⊥l,求椭圆离心率e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点(包括边界),则$\overrightarrow{PA}•\overrightarrow{PC}$的取值范围是$[\frac{1}{2},1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.f(x)=|x-a|+|2x+1|
(1)a=1,解不等式f(x)≤3;
(2)f(x)≤2a+x在[a,+∞)上有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线E:y2=4x,设A、B是抛物线E上分别位于x轴两侧的两个动点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{9}{4}$(其中O为坐标原点)
(Ⅰ)求证:直线AB必过定点,并求出该定点Q的坐标;
(Ⅱ)过点Q作AB的垂线与抛物线交于G、D两点,求四边形AGBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义运算$|\begin{array}{l}{a}&{c}\\{b}&{d}\end{array}|$=ad-bc,复数z满足$|\begin{array}{l}{z}&{i}\\{1}&{i}\end{array}|$=1+i,$\overline{z}$为z的共轭复数,则$\overline{z}$=2+i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足条件$\left\{\begin{array}{l}{4x-y-8≤0}\\{2x-3y+6≥0}\\{x+y-2≥0}\end{array}\right.$,若x2+2y2≥m恒成立,则实数m的最大值为(  )
A.5B.$\frac{4}{3}$C.$\sqrt{2}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校高一(1)(2)两个班联合开展“诗词大会进校园,国学经典润心田”古诗词竞赛主题班会活动,主持人从这两个班分别随机选出20名同学进行当场测试,他们的测试成绩按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分组,分别用频率分布直方图与茎叶图统计如图(单位:分):

(2)班20名学生成绩茎叶图:
 4 5
 5 2
 64 5 6 8
 7 0 5 5 8 8 8 8 9
 80 0 5 5  
 94 5 
(Ⅰ)分别计算两个班这20名同学的测试成绩在[80,90)的频率,并补全频率分布直方图;
(Ⅱ)分别从两个班随机选取1人,设这两人中成绩在[80,90)的人数为X,求X的分布列(频率当作概率使用).
(Ⅲ)运用所学统计知识分析比较两个班学生的古诗词水平.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数F(x)=f(x)+x2是奇函数,且f(2)=1,则f(-2)=(  )
A.9B.-9C.-7D.7

查看答案和解析>>

同步练习册答案