精英家教网 > 高中数学 > 题目详情
17.已知实数x,y满足条件$\left\{\begin{array}{l}{4x-y-8≤0}\\{2x-3y+6≥0}\\{x+y-2≥0}\end{array}\right.$,若x2+2y2≥m恒成立,则实数m的最大值为(  )
A.5B.$\frac{4}{3}$C.$\sqrt{2}$D.$\frac{8}{3}$

分析 利用换元法将不等式进行转化,结合点到直线的距离公式进行求解即可.

解答 解:设a=x,b=$\sqrt{2}$y,则不等式x2+2y2≥m等价为a2+b2≥m,
则实数x,y满足条件$\left\{\begin{array}{l}{4x-y-8≤0}\\{2x-3y+6≥0}\\{x+y-2≥0}\end{array}\right.$等价为$\left\{\begin{array}{l}{4a-\frac{\sqrt{2}}{2}b-8≤0}\\{2a-\frac{3\sqrt{2}}{2}b+6≥0}\\{a+\frac{\sqrt{2}}{2}b-2≥0}\end{array}\right.$,
作出不等式组对应的平面区域如图:
设z=a2+b2,则z的几何意义是区域内的点到原点的距离,
由图象知O到直线2a+$\sqrt{2}$b=4的距离最小,
此时原点到直线的距离d=$\frac{|4|}{\sqrt{4+2}}$=$\frac{4}{\sqrt{6}}$,
则z=d2=$\frac{8}{3}$,
即m≤$\frac{8}{3}$,即实数m的最大值为$\frac{8}{3}$,
故选:D.

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,解题的关键是会利用换元法进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.70年代中期,美国各所名牌大学校园内,人们都像发疯一般,夜以继日,废寝忘食地玩一个数学游戏.这个游戏十分简单:任意写出一个自然数N,并且按照以下的规律进行变换:如果是个奇数,则下一步变成3N+1;如果是个偶数,则下一步变成$\frac{N}{2}$.不单单是学生,甚至连教师、研究员、教授与学究都纷纷加入.为什么这个游戏的魅力经久不衰?因为人们发现,无论N是怎样一个数字,最终都无法逃脱回到谷底1.准确地说,是无法逃出落入底部的4-2-1循环,永远也逃不出这样的宿命.这就是著名的“冰雹猜想”.按照这种运算,自然数27经过十步运算得到的数为(  )
A.142B.71C.214D.107

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下图为某一函数的求值程序框图,根据框图,如果输出的y的值为3,那么应输入x=(  )
A.1B.2C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f(x)为奇函数,g(x)为偶函数,若f(x)+g(x)=x2-$\frac{1}{x}$,f(x)=-$\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在四面体ABCD中,截面PQMN是正方形,则下列命题中,正确的为①②④(填序号).
①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设a>0,b>0,函数f(x)=xlnx,g(x)=-a+xlnb,且?x∈[$\frac{a+b}{4}$,$\frac{3a+b}{5}$],使得f(x)≤g(x),则$\frac{b}{a}$的取值范围是[e,7).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知是某几何体的三视图,则该几何体的体积为(  )
A.$\frac{1}{3}+\frac{π}{12}$B.$1+\frac{π}{12}$C.$\frac{1}{3}+\frac{π}{4}$D.$1+\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若复数z=$\frac{-i}{1+2i}$(i是虚数单位),则z的实部为$-\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在直三棱柱ABC-A1B1C1中,D是A1B1的中点.
(1)求证:A1C∥平面BDC1
(2)若AB⊥AC,且AB=AC=$\frac{2}{3}$AA1,求二面角A-BD-C1的余弦值.

查看答案和解析>>

同步练习册答案