精英家教网 > 高中数学 > 题目详情
6.若复数z=$\frac{-i}{1+2i}$(i是虚数单位),则z的实部为$-\frac{2}{5}$.

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:∵z=$\frac{-i}{1+2i}$=$\frac{-i(1-2i)}{(1+2i)(1-2i)}=-\frac{2}{5}-\frac{1}{5}i$,
∴z的实部为-$\frac{2}{5}$.
故答案为:$-\frac{2}{5}$.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点(包括边界),则$\overrightarrow{PA}•\overrightarrow{PC}$的取值范围是$[\frac{1}{2},1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足条件$\left\{\begin{array}{l}{4x-y-8≤0}\\{2x-3y+6≥0}\\{x+y-2≥0}\end{array}\right.$,若x2+2y2≥m恒成立,则实数m的最大值为(  )
A.5B.$\frac{4}{3}$C.$\sqrt{2}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校高一(1)(2)两个班联合开展“诗词大会进校园,国学经典润心田”古诗词竞赛主题班会活动,主持人从这两个班分别随机选出20名同学进行当场测试,他们的测试成绩按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分组,分别用频率分布直方图与茎叶图统计如图(单位:分):

(2)班20名学生成绩茎叶图:
 4 5
 5 2
 64 5 6 8
 7 0 5 5 8 8 8 8 9
 80 0 5 5  
 94 5 
(Ⅰ)分别计算两个班这20名同学的测试成绩在[80,90)的频率,并补全频率分布直方图;
(Ⅱ)分别从两个班随机选取1人,设这两人中成绩在[80,90)的人数为X,求X的分布列(频率当作概率使用).
(Ⅲ)运用所学统计知识分析比较两个班学生的古诗词水平.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系中,直线l过定点(-1,0),且倾斜角为α(0<α<π),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ=cosθ(ρcosθ+8).
(1)写出l的参数方程和C的直角坐标方程;
(2)若直线l与曲线C交于A,B两点,且$|AB|=8\sqrt{10}$,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在多面体ABCDEF中,四边形ABCD是菱形,AC,BD相交于点O,EF∥AB,EF=$\frac{1}{2}$AB,平面BCF⊥平面ABCD,BF=CF,G为BC的中点,求证:
(1)OG∥平面ABFE;
(2)AC⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U,集合M,N满足M⊆N⊆U,则下列结论正确的是(  )
A.M∪N=UB.(∁UM)∪(∁UN)=UC.M∩(∁UN)=∅D.(∁UM)∪(∁UN)=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数F(x)=f(x)+x2是奇函数,且f(2)=1,则f(-2)=(  )
A.9B.-9C.-7D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx+x2-2ax+1(a为常数).
(1)讨论函数f(x)的单调性;
(2)若对任意的$a∈({1,\sqrt{2}})$,都存在x0∈(0,1]使得不等式$f({x_0})+lna>m({a-{a^2}})$成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案