分析 (1)求出原函数的导函数,当a≤0时,导函数恒大于0,然后利用二次函数的判别式对a分类讨论求出导函数在不同区间内的符号,得到原函数的单调性;
(2)由(1)知,$a∈({1,\sqrt{2}})$时,函数f(x)在(0,1]上单调递增,求出函数在(0,1]上的最大值2-2a,把存在x0∈(0,1]使得不等式$f({x_0})+lna>m({a-{a^2}})$成立转化为2-2a+lna>m(a-a2),得到$m>\frac{2}{a}+\frac{lna}{{a-{a^2}}}$恒成立,构造函数$g(a)=\frac{2}{a}+\frac{lna}{{a-{a^2}}},a∈({1,\sqrt{2}})$,求导可知为增函数,得其最大值,则实数m的取值范围可求.
解答 解:(1)由f(x)=lnx+x2-2ax+1,得$f'(x)=\frac{1}{x}+2x-2a=\frac{{2{x^2}-2ax+1}}{x},x>0$,
令h(x)=2x2-2ax+1.
①当a≤0时,h(x)>0,则f'(x)>0成立,
△=4a2-8,当$-\sqrt{2}≤a≤\sqrt{2}$时,△≤0,则2x2-2ax+1≥0,h(x)≥0,即f'(x)≥0恒成立,
∴当$a≤\sqrt{2}$时,f'(x)≥0,f(x)在(0,+∞)上单调递增;
②当$a>\sqrt{2}$时,由2x2-2ax+10≥0,得$x>\frac{{a+\sqrt{{a^2}-2}}}{2}$或$0<x<\frac{{a-\sqrt{{a^2}-2}}}{2}$,
由2x2-2ax+10<0,得$\frac{{a-\sqrt{{a^2}-2}}}{2}<x<\frac{{a+\sqrt{{a^2}-2}}}{2}$.
∴f(x)在$({0,\frac{{a-\sqrt{{a^2}-2}}}{2}}),({\frac{{a+\sqrt{{a^2}-2}}}{2}})$上单调递增,在$({\frac{{a-\sqrt{{a^2}-2}}}{2},\frac{{a+\sqrt{{a^2}-2}}}{2}})$单调递减;
(2)∵$a∈({1,\sqrt{2}}),\frac{1}{x}+2x-2a>0$,
∴f'(x)>0,f(x)在(0,1]单调递增,f(x)max=f(1)=2-2a,
存在x0∈(0,1]使得不等式$f({x_0})+lna>m({a-{a^2}})$成立,
即2-2a+lna>m(a-a2),
∵任意的$a∈({1,\sqrt{2}})$,∴a-a2<0,即$m>\frac{2}{a}+\frac{lna}{{a-{a^2}}}$恒成立,
令$g(a)=\frac{2}{a}+\frac{lna}{{a-{a^2}}}$,则$g'(a)=\frac{{({2a-1})lna-({2{a^2}-3a+1})}}{{{{({a-{a^2}})}^2}}}=\frac{{({2a-1})({lna-a+1})}}{{{{({a-{a^2}})}^2}}}$,
∵任意的$a∈({1,\sqrt{2}})$,$\frac{{({2a-1})({lna-a+1})}}{{{{({a-{a^2}})}^2}}}>0$,
∴$g(a)=\frac{2}{a}+\frac{lna}{{a-{a^2}}},a∈({1,\sqrt{2}})$是增函数,
∴$g(x)<g({\sqrt{2}})=\frac{2}{{\sqrt{2}}}+\frac{{ln\sqrt{2}}}{{\sqrt{2}-2}}=\sqrt{2}-\frac{{({2+\sqrt{2}})ln\sqrt{2}}}{2}$,
∵$m>\frac{2-2a+lna}{{a-{a^2}}}$恒成立,
∴实数m的取值范围$m≥\sqrt{2}-\frac{{({2+\sqrt{2}})ln\sqrt{2}}}{2}$.
点评 本题考查利用导数研究函数的单调性,考查利用导数求函数的最值,考查数学转化思想方法和分类讨论的数学思想方法,是压轴题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b>c>a | B. | b>a>c | C. | a>b>c | D. | c>a>b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com