分析 利用线面平行与垂直的判定定理和性质定理、正方形的性质、异面直线所成的角即可判定.
解答 解:在四面体ABCD中,∵截面PQMN是正方形,∴PQ∥MN,PQ?平面ACD,MN?平面ACD,∴PQ∥平面ACD.
∵平面ACB∩平面ACD=AC,∴PQ∥AC,可得AC∥平面PQMN.
同理可得BD∥平面PQMN,BD∥PN.∵PN⊥PQ,∴AC⊥BD.
由BD∥PN,∴∠MPN是异面直线PM与BD所成的角,且为45°.
由上面可知:BD∥PN,PQ∥AC.$\frac{PN}{BD}=\frac{AN}{AD},\frac{MN}{AC}=\frac{DN}{AD}$
而AN≠DN,PN=MN,∴BD≠AC.
综上可知:①②④都正确.
故答案为:①②④.
点评 本题考查了线面平行与垂直的判定定理和性质定理、正方形的性质、异面直线所成的角,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | $\frac{4}{3}$ | C. | $\sqrt{2}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com