| A. | $\frac{π}{12}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
分析 根据y=sin(2x+φ)(|φ|<$\frac{π}{2}$)的一条对称轴方程为x=$\frac{π}{6}$,求出φ.曲线C向左平移θ个单位长度,求出解析式,对称中心为($\frac{π}{6}$,0),可得θ的值,根据k的不同,即可求出|φ-θ|的最小值.
解答 解::y=sin(2x+φ)(|φ|<$\frac{π}{2}$)的一条对称轴方程为x=$\frac{π}{6}$,
∴sin($\frac{π}{3}$+φ)=±1,
则$\frac{π}{3}$+φ=$\frac{π}{2}+kπ$,k∈Z.
∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$.
可得y=sin(2x+$\frac{π}{6}$)⇒向左平移θ个单位长度,得:sin(2x+2θ+$\frac{π}{6}$),
对称中心为($\frac{π}{6}$,0),
则:2×$\frac{π}{6}$+2θ+$\frac{π}{6}$=kπ,k∈Z.
∴θ=$\frac{1}{2}kπ-\frac{π}{4}$.
则|φ-θ|=θ=|$\frac{1}{2}kπ-\frac{π}{4}$-$\frac{π}{6}$|的最小值为:$\frac{π}{12}$.
故选:A.
点评 本题考查了三角函数的性质的运用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 0.2718 | B. | 0.0456 | C. | 0.3174 | D. | 0.1359 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}+\frac{π}{12}$ | B. | $1+\frac{π}{12}$ | C. | $\frac{1}{3}+\frac{π}{4}$ | D. | $1+\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 关于原点对称 | B. | 关于y轴对称 | C. | 关于x轴对称 | D. | 关于直线y=x对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com