精英家教网 > 高中数学 > 题目详情
19.已知变量x、y满足约束条件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-2y+3≥0}\\{x≤a}\end{array}\right.$,且z=x+2y的最小值为3,则$\frac{y}{x+1}$≥$\frac{1}{2}$的概率是(  )
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{5}{9}$

分析 由约束条件作出可行域,化目标函数为直线方程斜截式,得到当直线得z=x+2y截距最小时z最小,求出可行域内使直线截距最小的点的坐标,代入x=a求出a的值,利用$\frac{y}{x+1}$≥$\frac{1}{2}$的几何意义,转化求解概率即可.

解答 解:由变量x、y满足约束条件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-2y+3≥0}\\{x≤a}\end{array}\right.$画出可行域如图,

由z=x+2y的最小值为3,在y轴上的截距最小.
由图可知,直线得z=x+2y过A点时满足题意.
联立$\left\{\begin{array}{l}{x+2y=3}\\{x+y=3}\end{array}\right.$,解得A(3,0).A在直线x=a上,可得a=3.
则$\frac{y}{x+1}$≥$\frac{1}{2}$的几何意义是可行域内的点与Q(-1,0)连线的斜率超过$\frac{1}{2}$,
由图形可知:直线x=3与直线x-2y+1=0的交点为:(3,2),
直线x-2y+3=0与x=3的交点(3,3),
∴则$\frac{y}{x+1}$<$\frac{1}{2}$的概率:$\frac{A{B}^{2}}{A{C}^{2}}$=$\frac{4}{9}$,
则$\frac{y}{x+1}$≥$\frac{1}{2}$的概率是:1-$\frac{4}{9}$=$\frac{5}{9}$.
故选:D.

点评 本题考查了简单的线性规划,训练了数形结合的解题思想方法,是难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知直线l1:x-2y=0的倾斜角为α,倾斜角为2α的直线l2与圆M:x2+y2+2x-2y+F=0交于A、C两点,其中A(-1,0)、B、D在圆M上,且位于直线l2的两侧,则四边形ABCD的面积的最大值是$\frac{8}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知P为函数$y=\frac{4}{x}$的图象上任一点,过点P作直线PA,PB分别与圆x2+y2=1相切于A,B两点,直线AB交x轴于M点,交y轴于N点,则△OMN的面积为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2(x-3a)+1(a>0,x∈R)
(1)求函数y=f(x)的极值;
(2)函数y=f(x)在(0,2)上单调递减,求实数a的取值范围;
(3)若在区间(0,+∞)上存在实数x0,使得不等式f(x0)-4a3≤0能成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1,${C_2}:\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t-1\\ y=\frac{{\sqrt{2}}}{2}t+1\end{array}\right.$(t为参数).
(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;
(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的$\sqrt{3}$倍,得到曲线${C_1}^′$.设P(-1,1),曲线C2与${C_1}^′$交于A,B两点,求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知曲线C:y=sin(2x+φ)(|φ|<$\frac{π}{2}$)的一条对称轴方程为x=$\frac{π}{6}$,曲线C向左平移θ(θ>0)个单位长度,得到的曲线E的一个对称中心为($\frac{π}{6}$,0),则|φ-θ|的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设集合A={0,-4},B={x|x2+2(a+1)x+a2-1=0,x∈R}.若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若实数x,y满足$\left\{\begin{array}{l}{2x-y≤2}\\{x-y≥-1}\\{x+y≥1}\end{array}\right.$,则2x+y的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A(1,-2),B(4,2),则与$\overrightarrow{AB}$反方向的单位向量为(  )
A.(-$\frac{3}{5}$,$\frac{4}{5}$)B.($\frac{3}{5}$,-$\frac{4}{5}$)C.(-$\frac{3}{5}$,-$\frac{4}{5}$)D.($\frac{3}{5}$,$\frac{4}{5}$)

查看答案和解析>>

同步练习册答案