精英家教网 > 高中数学 > 题目详情
9.已知A(1,-2),B(4,2),则与$\overrightarrow{AB}$反方向的单位向量为(  )
A.(-$\frac{3}{5}$,$\frac{4}{5}$)B.($\frac{3}{5}$,-$\frac{4}{5}$)C.(-$\frac{3}{5}$,-$\frac{4}{5}$)D.($\frac{3}{5}$,$\frac{4}{5}$)

分析 与$\overrightarrow{AB}$反方向的单位向量=-$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$,即可得出.

解答 解:$\overrightarrow{AB}$=(3,4).
∴与$\overrightarrow{AB}$反方向的单位向量=-$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$=-$\frac{(3,4)}{\sqrt{{3}^{2}+{4}^{2}}}$=$(-\frac{3}{5},-\frac{4}{5})$.
故选:C.

点评 本题考查了向量的坐标运算性质、数量积运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知变量x、y满足约束条件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-2y+3≥0}\\{x≤a}\end{array}\right.$,且z=x+2y的最小值为3,则$\frac{y}{x+1}$≥$\frac{1}{2}$的概率是(  )
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x,y满足不等式$\left\{\begin{array}{l}x+y≤2\\ 2x+y≤3\\ x≥0\\ y≥0\end{array}\right.$,则3x+2y的最大值为(  )
A.0B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.当实数x,y满足不等式组$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$时,ax+y+a+1≥0恒成立,则实数a的取值范围是$[-\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知非零向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$+2$\overrightarrow{b}$|,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为-$\frac{1}{4}$,则$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线y2=2px(p>0)上的一点M(1,t)(t>0)到焦点的距离为5,双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知i是虚数单位,复数z满足$\frac{z}{2+z}=i$,则复数z在复平面内对应的点的坐标是(  )
A.$(-\frac{1}{2},\frac{1}{2})$B.(-1,1)C.$(\frac{1}{2},-\frac{1}{2})$D.(1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象与$g(x)=2co{s^2}({x-\frac{π}{6}})+1$的图象的对称轴相同,则f(x)的一个递增区间为(  )
A.$[{-\frac{5π}{6},\frac{π}{6}}]$B.$[{-\frac{π}{3},\frac{π}{6}}]$C.$[{-\frac{5π}{12},\frac{π}{12}}]$D.$[{\frac{π}{12},\frac{7π}{12}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线l:y=kx-k与抛物线C:y2=4x及其准线分别交于M,N两点,F为抛物线的焦点,若$2\overrightarrow{FM}=\overrightarrow{MN}$,则实数k等于(  )
A.$±\frac{{\sqrt{3}}}{3}$B.±1C.$±\sqrt{3}$D.±2

查看答案和解析>>

同步练习册答案