精英家教网 > 高中数学 > 题目详情
17.当实数x,y满足不等式组$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$时,ax+y+a+1≥0恒成立,则实数a的取值范围是$[-\frac{1}{2},+∞)$.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义结合数形结合进行求解即可.

解答 解:作出不等式组对应的平面区域如图:
直线ax+y+a-1=a(x+1)+(y+1)=0,过定点D(-1,-1).
ax+y+a+1≥0恒成立等价为可行域都在直线ax+y+a+1=0的上方;则由图象知只要B(1,0)满足ax+y+a+1≥0即可,
即2a+1≥0,得a≥$-\frac{1}{2}$,
故答案为:$[-\frac{1}{2},+∞)$;

点评 本题主要考查线性规划的应用,根据可行域与直线的关系结合数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2(x-3a)+1(a>0,x∈R)
(1)求函数y=f(x)的极值;
(2)函数y=f(x)在(0,2)上单调递减,求实数a的取值范围;
(3)若在区间(0,+∞)上存在实数x0,使得不等式f(x0)-4a3≤0能成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若实数x,y满足$\left\{\begin{array}{l}{2x-y≤2}\\{x-y≥-1}\\{x+y≥1}\end{array}\right.$,则2x+y的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,$AB=AC=\frac{1}{2}A{A_1}$,AB⊥AC,D是棱BB1的中点.
(Ⅰ)证明:平面A1DC⊥平面ADC;
(Ⅱ)求平面A1DC与平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,平面ABCD⊥平面BCF,四边形ABCD是菱形,∠BCF=90°.
(1)求证:BF=DF;
(2)若∠BCD=60°,且直线DF与平面BCF所成角为45°,求二面角B-AF-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x2+x-6>0},集合B={x|-1<x<3},若a∈(A∪B),则a可以是(  )
A.-3B.-2C.-1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A(1,-2),B(4,2),则与$\overrightarrow{AB}$反方向的单位向量为(  )
A.(-$\frac{3}{5}$,$\frac{4}{5}$)B.($\frac{3}{5}$,-$\frac{4}{5}$)C.(-$\frac{3}{5}$,-$\frac{4}{5}$)D.($\frac{3}{5}$,$\frac{4}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设复数z满足(1+i)z=-2i,i为虚数单位,则z=(  )
A.-1+iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知各项均为正数的等差数列{an}满足:a4=2a2,且a1,4,a4成等比数列,设{an}的前n项和为Sn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列$\left\{{\frac{S_n}{{n•{2^n}}}}\right\}$的前n项和为Tn,求证:Tn<3.

查看答案和解析>>

同步练习册答案