精英家教网 > 高中数学 > 题目详情
6.设复数z满足(1+i)z=-2i,i为虚数单位,则z=(  )
A.-1+iB.-1-iC.1+iD.1-i

分析 利用复数的运算法则、共轭复数的定义即可得出.

解答 解:(1+i)z=-2i,则z=$\frac{-2i}{1+i}$=$\frac{-2i(1-i)}{(1+i)(1-i)}$=-i-1.
故选:B.

点评 本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数$f(x)=\frac{1}{x}{log_2}({{4^x}+1})-1$的图象(  )
A.关于原点对称B.关于y轴对称C.关于x轴对称D.关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.当实数x,y满足不等式组$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$时,ax+y+a+1≥0恒成立,则实数a的取值范围是$[-\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线y2=2px(p>0)上的一点M(1,t)(t>0)到焦点的距离为5,双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知i是虚数单位,复数z满足$\frac{z}{2+z}=i$,则复数z在复平面内对应的点的坐标是(  )
A.$(-\frac{1}{2},\frac{1}{2})$B.(-1,1)C.$(\frac{1}{2},-\frac{1}{2})$D.(1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线l:x+2y-4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B三点的圆的标准方程为(x-2)2+(y-1)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象与$g(x)=2co{s^2}({x-\frac{π}{6}})+1$的图象的对称轴相同,则f(x)的一个递增区间为(  )
A.$[{-\frac{5π}{6},\frac{π}{6}}]$B.$[{-\frac{π}{3},\frac{π}{6}}]$C.$[{-\frac{5π}{12},\frac{π}{12}}]$D.$[{\frac{π}{12},\frac{7π}{12}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若m,n是两条不同的直线,α是一个平面,则下列说法正确的是(  )
A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊥α,则m∥nC.若m⊥n,n?α,则m⊥αD.若m∥n,m∥α,则n∥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.A,B是圆O:x2+y2=1上不同的两点,且$\overrightarrow{OA}•\overrightarrow{OB}=0$,若存在实数λ,μ使得$\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,则点C在圆O上的充要条件是(  )
A.λ22=1B.$\frac{1}{λ}$+$\frac{1}{μ}$=1C.λ•μ=1D.λ+μ=1

查看答案和解析>>

同步练习册答案