| A. | 关于原点对称 | B. | 关于y轴对称 | C. | 关于x轴对称 | D. | 关于直线y=x对称 |
分析 根据对数运算性质、指数运算性质化简f(x),f(-x),判断f(x)的奇偶性,即可得出结论.
解答 解:f(x)=$\frac{1}{x}$log2(4x+1)-1=log2(4x+1)${\;}^{\frac{1}{x}}$-1=log2$\frac{({4}^{x}+1)^{\frac{1}{x}}}{2}$,
f(-x)=log2$\frac{({4}^{-x}+1)^{-\frac{1}{x}}}{2}$=log2$\frac{1}{2•({4}^{-x}+1)^{\frac{1}{x}}}$=log2[$\frac{1}{2}•$($\frac{1}{{4}^{-x}+1}$)${\;}^{\frac{1}{x}}$]
=log2[$\frac{1}{2}$•($\frac{{4}^{x}}{1+{4}^{x}}$)${\;}^{\frac{1}{x}}$]=log2$\frac{2}{(1+{4}^{x})^{\frac{1}{x}}}$,
∴f(-x)=-f(x),
∴f(x)是奇函数,f(x)的函数图象关于原点对称.
故选A.
点评 本题考查了指数运算性质,对数运算性质,函数奇偶性的判断,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com