分析 作出不等式组表示的平面区域,由z=2x+y可得y=-2x+z,则z表示直线y=-2x+z在y轴上的截距,截距越小,z越小,结合图象可求z的最小值.
解答
解:作出实数x,y满足$\left\{\begin{array}{l}{2x-y≤2}\\{x-y≥-1}\\{x+y≥1}\end{array}\right.$,表示的平面区域,如图所示的阴影部分,
由z=2x+y可得y=-2x+z,则z表示直线y=-2x+z在y轴上的截距,截距越小,z越小,
由题意可得,当y=-2x+z经过点C时,z最小,
由$\left\{\begin{array}{l}{x-y=-1}\\{x+y=1}\end{array}\right.$,可得C(0,1),
此时z=1,
故答案为:1.
点评 本题主要考查了线性目标函数在线性约束条件下的最值的求解,解题的关键是明确z的几何意义.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 关于原点对称 | B. | 关于y轴对称 | C. | 关于x轴对称 | D. | 关于直线y=x对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{-\frac{5π}{6},\frac{π}{6}}]$ | B. | $[{-\frac{π}{3},\frac{π}{6}}]$ | C. | $[{-\frac{5π}{12},\frac{π}{12}}]$ | D. | $[{\frac{π}{12},\frac{7π}{12}}]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com