14£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©³¤ÖáµÄÁ½¶¥µãΪA¡¢B£¬×óÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬½¹¾àΪ2cÇÒa=2c£¬¹ýF1ÇÒ´¹Ö±ÓÚxÖáµÄÖ±Ïß±»ÍÖÔ²C½ØµÃµÄÏ߶γ¤Îª3£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÔÚË«ÇúÏß$T£º\frac{x^2}{4}-\frac{y^2}{3}=1$ÉÏÈ¡µãQ£¨ÒìÓÚ¶¥µã£©£¬Ö±ÏßOQÓëÍÖÔ²C½»ÓÚµãP£¬ÈôÖ±ÏßAP¡¢BP¡¢AQ¡¢BQµÄбÂÊ·Ö±ðΪk1¡¢k2¡¢k3¡¢k4£¬ÊÔÖ¤Ã÷£ºk1+k2+k3+k4Ϊ¶¨Öµ£»
£¨3£©ÔÚÍÖÔ²CÍâµÄÅ×ÎïÏßK£ºy2=4xÉÏȡһµãE£¬ÈôEF1¡¢EF2µÄбÂÊ·Ö±ðΪ${k_1}^¡ä$¡¢${k_2}^¡ä$£¬Çó$\frac{1}{{{k_1}^¡ä{k_2}^¡ä}}$µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄͨ¾¶¹«Ê½¼°a=2c£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì·½³Ì£»
£¨2£©¸ù¾ÝÖ±ÏßµÄбÂʹ«Ê½£¬ÇóµÃk1+k2=-$\frac{3{x}_{1}}{{2y}_{1}}$£¬k3+k4=$\frac{3{x}_{2}}{2{y}_{2}}$£¬ÓÉ$\overrightarrow{OP}$Óë$\overrightarrow{OQ}$¹²Ïߣ¬Ôò$\frac{{x}_{1}}{{y}_{1}}$=$\frac{{x}_{2}}{{y}_{2}}$£¬¼´¿ÉÇóµÃk1+k2+k3+k4=0£»
£¨3£©EF1µÄбÂÊ${k_1}^¡ä$=$\frac{y}{\frac{{y}^{2}}{4}+1}$£¬£¨y2£¾$\frac{8}{3}$ÇÒy¡Ù-2£©£¬EF2µÄбÂÊ${k_2}^¡ä$=$\frac{y}{\frac{{y}^{2}}{4}-1}$£¬£¨y2£¾$\frac{8}{3}$ÇÒy¡Ù2£©£¬Ôò$\frac{1}{{{k_1}^¡ä{k_2}^¡ä}}$=$\frac{{y}^{4}-16}{16{y}^{2}}$£¬£¨y2£¾$\frac{8}{3}$ÇÒy¡Ù¡À2£©£¬¸ù¾Ýº¯Êýµ¥µ÷ÐÔ¼´¿ÉÇóµÃ$\frac{1}{{{k_1}^¡ä{k_2}^¡ä}}$µÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâa=2c£¬ÍÖÔ²µÄͨ¾¶Ø­ABØ­=$\frac{{2b}^{2}}{a}$=3£¬
a2=b2+c2£¬Ôòa=2£¬b=$\sqrt{3}$£¬c=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{x^2}{4}+\frac{y^2}{3}=1$£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£ºA£¨-2£¬0£©£¬B£¨2£¬0£©£¬F1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬ÉèP£¨x1£¬y1£©£¬
Ôò$\frac{{x}_{1}^{2}}{4}+\frac{{y}_{1}^{2}}{3}=1$£¬Ôòx12-4=-$\frac{4{y}_{1}^{2}}{3}$£¬k1+k2=$\frac{{y}_{1}}{{x}_{1}+2}$+$\frac{{y}_{1}}{{x}_{1}-2}$=$\frac{2{x}_{1}{y}_{1}}{{x}_{1}^{2}-4}$=$\frac{2{x}_{1}{y}_{1}}{-\frac{4{y}_{1}^{2}}{3}}$=-$\frac{3{x}_{1}}{{2y}_{1}}$£¬ÉèQ£¨x2£¬y2£©£¬Ôò$\frac{{x}_{2}^{2}}{4}-\frac{{y}_{2}^{2}}{3}=1$£¬Ôòx12-4=$\frac{4{y}_{1}^{2}}{3}$£¬
Ôòk3+k4=$\frac{{y}_{2}}{{x}_{2}+2}$+$\frac{{y}_{2}}{{x}_{2}-2}$=$\frac{2{x}_{2}{y}_{2}}{{x}_{2}^{2}-4}$=$\frac{2{x}_{2}{y}_{2}}{\frac{4{y}_{2}^{2}}{3}}$=$\frac{3{x}_{2}}{2{y}_{2}}$£¬
ÓÖ$\overrightarrow{OP}$Óë$\overrightarrow{OQ}$¹²Ïߣ¬
¡àx1=¦Ëx2£¬y1=¦Ëy2£¬
¡à$\frac{{x}_{1}}{{y}_{1}}$=$\frac{{x}_{2}}{{y}_{2}}$£¬
k1+k2+k3+k4=$\frac{3}{2}$£¨-$\frac{{x}_{1}}{{y}_{1}}$+$\frac{{x}_{2}}{{y}_{2}}$£©=0£»

 £¨3£©ÉèE£¨$\frac{{y}^{2}}{4}$£¬y£©£¬ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{{y}^{2}=4x}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{x}^{2}=\frac{2}{3}}\\{{y}^{2}=\frac{8}{3}}\end{array}\right.$£¬
ÓÉEÔÚÍÖÔ²CÍâµÄÅ×ÎïÏßK£ºy2=4xÉÏÒ»µã£¬Ôòy2£¾$\frac{8}{3}$£¬

ÔòEF1µÄбÂÊ${k_1}^¡ä$=$\frac{y}{\frac{{y}^{2}}{4}+1}$£¬£¨y2£¾$\frac{8}{3}$ÇÒy¡Ù-2£©£¬EF2µÄбÂÊ${k_2}^¡ä$=$\frac{y}{\frac{{y}^{2}}{4}-1}$£¬£¨y2£¾$\frac{8}{3}$ÇÒy¡Ù2£©
Ôò${k_1}^¡ä$${k_2}^¡ä$=$\frac{y}{\frac{{y}^{2}}{4}+1}$¡Á$\frac{y}{\frac{{y}^{2}}{4}-1}$=$\frac{{y}^{2}}{£¨\frac{{y}^{2}}{4}£©^{2}-1}$=$\frac{16{y}^{2}}{{y}^{4}-16}$£¬£¨y2£¾$\frac{8}{3}$ÇÒy¡Ù¡À2£©
Ôò$\frac{1}{{{k_1}^¡ä{k_2}^¡ä}}$=$\frac{{y}^{4}-16}{16{y}^{2}}$£¬£¨y2£¾$\frac{8}{3}$ÇÒy¡Ù¡À2£©
Áît=y2£¬£¨t£¾$\frac{8}{3}$ÇÒt¡Ù4£¬£©
Éèf£¨t£©=$\frac{{t}^{2}-16}{16t}$=$\frac{t}{16}$-$\frac{1}{t}$£¬£¨t£¾$\frac{8}{3}$ÇÒt¡Ù4£¬£©£¬Çóµ¼f¡ä£¨t£©=$\frac{1}{16}$+$\frac{1}{{t}^{2}}$£¾0
¡àf£¨t£©ÔÚ£¨$\frac{8}{3}$£¬4£©£¬£¨4£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
¡àf£¨t£©µÄȡֵ·¶Î§£¨-$\frac{5}{24}$£¬0£©¡È£¨0£¬+¡Þ£©
¡à$\frac{1}{{{k_1}^¡ä{k_2}^¡ä}}$µÄȡֵ·¶Î§$£¨-\frac{5}{24}£¬0£©¡È£¨0£¬+¡Þ£©$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏßµÄбÂʹ«Ê½£¬ÍÖÔ²¼°Ë«ÇúÏßµÄÐÔÖÊ£¬º¯Êýµ¥µ÷ÐÔÓëµ¼ÊýµÄ¹ØÏµ£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªÏòÁ¿$\overrightarrow a=£¨1£¬0£©£¬\overrightarrow b=£¨0£¬1£©£¬\overrightarrow c=\overrightarrow a+¦Ë\overrightarrow b£¨¦Ë¡ÊR£©$£¬ÏòÁ¿$\overrightarrow d$Èçͼ±íʾ£¬Ôò£¨¡¡¡¡£©
A£®?¦Ë£¾0£¬Ê¹µÃ$\overrightarrow c¡Í\overrightarrow d$B£®?¦Ë£¾0£¬Ê¹µÃ£¼$\overrightarrow{c}$£¬$\overrightarrow{d}$£¾=60¡ã
C£®?¦Ë£¼0£¬Ê¹µÃ£¼$\overrightarrow{c}$£¬$\overrightarrow{d}$£¾=30¡ãD£®?¦Ë£¾0£¬Ê¹µÃ$\overrightarrow c=m\overrightarrow d£¨m$Ϊ²»Îª0µÄ³£Êý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªÖ±Ïßl1£ºx-2y=0µÄÇãб½ÇΪ¦Á£¬Çãб½ÇΪ2¦ÁµÄÖ±Ïßl2ÓëÔ²M£ºx2+y2+2x-2y+F=0½»ÓÚA¡¢CÁ½µã£¬ÆäÖÐA£¨-1£¬0£©¡¢B¡¢DÔÚÔ²MÉÏ£¬ÇÒλÓÚÖ±Ïßl2µÄÁ½²à£¬ÔòËıßÐÎABCDµÄÃæ»ýµÄ×î´óÖµÊÇ$\frac{8}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÇúÏß$\left\{\begin{array}{l}{x=2cos¦È}\\{y=sin¦È}\end{array}\right.$£¬¦È¡Ê[0£¬2¦Ð£©ÉÏÒ»µãP£¨x£¬y£©µ½¶¨µãM£¨a£¬0£©£¬£¨a£¾0£©µÄ×îС¾àÀëΪ$\frac{3}{4}$£¬Ôòa=$\frac{11}{4}$»ò$\frac{\sqrt{21}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ½¹¾àΪ2£¬µãQ£¨$\frac{{a}^{2}}{\sqrt{{a}^{2}-{b}^{2}}}$£¬0£©ÔÚÖ±Ïßl£ºx=3ÉÏ£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÈôOÎª×ø±êÔ­µã£¬PΪֱÏßlÉÏÒ»¶¯µã£¬¹ýµãP×÷Ö±ÏßÓëÍÖÔ²ÏàÇеãÓÚµãA£¬Çó¡÷POAÃæ»ýSµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªA£¬B£¬CÈýµã¶¼ÔÚÌå»ýΪ$\frac{500¦Ð}{3}$µÄÇòOµÄ±íÃæÉÏ£¬ÈôAB=4£¬¡ÏACB=30¡ã£¬ÔòÇòÐÄOµ½Æ½ÃæABCµÄ¾àÀëΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªPΪº¯Êý$y=\frac{4}{x}$µÄͼÏóÉÏÈÎÒ»µã£¬¹ýµãP×÷Ö±ÏßPA£¬PB·Ö±ðÓëÔ²x2+y2=1ÏàÇÐÓÚA£¬BÁ½µã£¬Ö±ÏßAB½»xÖáÓÚMµã£¬½»yÖáÓÚNµã£¬Ôò¡÷OMNµÄÃæ»ýΪ$\frac{1}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=x2£¨x-3a£©+1£¨a£¾0£¬x¡ÊR£©
£¨1£©Çóº¯Êýy=f£¨x£©µÄ¼«Öµ£»
£¨2£©º¯Êýy=f£¨x£©ÔÚ£¨0£¬2£©Éϵ¥µ÷µÝ¼õ£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨3£©ÈôÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏ´æÔÚʵÊýx0£¬Ê¹µÃ²»µÈʽf£¨x0£©-4a3¡Ü0ÄܳÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÈôʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}{2x-y¡Ü2}\\{x-y¡Ý-1}\\{x+y¡Ý1}\end{array}\right.$£¬Ôò2x+yµÄ×îСֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸