·ÖÎö £¨1£©ÓÉÍÖÔ²µÄͨ¾¶¹«Ê½¼°a=2c£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì·½³Ì£»
£¨2£©¸ù¾ÝÖ±ÏßµÄбÂʹ«Ê½£¬ÇóµÃk1+k2=-$\frac{3{x}_{1}}{{2y}_{1}}$£¬k3+k4=$\frac{3{x}_{2}}{2{y}_{2}}$£¬ÓÉ$\overrightarrow{OP}$Óë$\overrightarrow{OQ}$¹²Ïߣ¬Ôò$\frac{{x}_{1}}{{y}_{1}}$=$\frac{{x}_{2}}{{y}_{2}}$£¬¼´¿ÉÇóµÃk1+k2+k3+k4=0£»
£¨3£©EF1µÄбÂÊ${k_1}^¡ä$=$\frac{y}{\frac{{y}^{2}}{4}+1}$£¬£¨y2£¾$\frac{8}{3}$ÇÒy¡Ù-2£©£¬EF2µÄбÂÊ${k_2}^¡ä$=$\frac{y}{\frac{{y}^{2}}{4}-1}$£¬£¨y2£¾$\frac{8}{3}$ÇÒy¡Ù2£©£¬Ôò$\frac{1}{{{k_1}^¡ä{k_2}^¡ä}}$=$\frac{{y}^{4}-16}{16{y}^{2}}$£¬£¨y2£¾$\frac{8}{3}$ÇÒy¡Ù¡À2£©£¬¸ù¾Ýº¯Êýµ¥µ÷ÐÔ¼´¿ÉÇóµÃ$\frac{1}{{{k_1}^¡ä{k_2}^¡ä}}$µÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâa=2c£¬ÍÖÔ²µÄͨ¾¶ØABØ=$\frac{{2b}^{2}}{a}$=3£¬
a2=b2+c2£¬Ôòa=2£¬b=$\sqrt{3}$£¬c=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{x^2}{4}+\frac{y^2}{3}=1$£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£ºA£¨-2£¬0£©£¬B£¨2£¬0£©£¬F1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬ÉèP£¨x1£¬y1£©£¬
Ôò$\frac{{x}_{1}^{2}}{4}+\frac{{y}_{1}^{2}}{3}=1$£¬Ôòx12-4=-$\frac{4{y}_{1}^{2}}{3}$£¬k1+k2=$\frac{{y}_{1}}{{x}_{1}+2}$+$\frac{{y}_{1}}{{x}_{1}-2}$=$\frac{2{x}_{1}{y}_{1}}{{x}_{1}^{2}-4}$=$\frac{2{x}_{1}{y}_{1}}{-\frac{4{y}_{1}^{2}}{3}}$=-$\frac{3{x}_{1}}{{2y}_{1}}$£¬ÉèQ£¨x2£¬y2£©£¬Ôò$\frac{{x}_{2}^{2}}{4}-\frac{{y}_{2}^{2}}{3}=1$£¬Ôòx12-4=$\frac{4{y}_{1}^{2}}{3}$£¬
Ôòk3+k4=$\frac{{y}_{2}}{{x}_{2}+2}$+$\frac{{y}_{2}}{{x}_{2}-2}$=$\frac{2{x}_{2}{y}_{2}}{{x}_{2}^{2}-4}$=$\frac{2{x}_{2}{y}_{2}}{\frac{4{y}_{2}^{2}}{3}}$=$\frac{3{x}_{2}}{2{y}_{2}}$£¬
ÓÖ$\overrightarrow{OP}$Óë$\overrightarrow{OQ}$¹²Ïߣ¬
¡àx1=¦Ëx2£¬y1=¦Ëy2£¬
¡à$\frac{{x}_{1}}{{y}_{1}}$=$\frac{{x}_{2}}{{y}_{2}}$£¬
k1+k2+k3+k4=$\frac{3}{2}$£¨-$\frac{{x}_{1}}{{y}_{1}}$+$\frac{{x}_{2}}{{y}_{2}}$£©=0£»![]()
£¨3£©ÉèE£¨$\frac{{y}^{2}}{4}$£¬y£©£¬ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{{y}^{2}=4x}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{x}^{2}=\frac{2}{3}}\\{{y}^{2}=\frac{8}{3}}\end{array}\right.$£¬
ÓÉEÔÚÍÖÔ²CÍâµÄÅ×ÎïÏßK£ºy2=4xÉÏÒ»µã£¬Ôòy2£¾$\frac{8}{3}$£¬
ÔòEF1µÄбÂÊ${k_1}^¡ä$=$\frac{y}{\frac{{y}^{2}}{4}+1}$£¬£¨y2£¾$\frac{8}{3}$ÇÒy¡Ù-2£©£¬EF2µÄбÂÊ${k_2}^¡ä$=$\frac{y}{\frac{{y}^{2}}{4}-1}$£¬£¨y2£¾$\frac{8}{3}$ÇÒy¡Ù2£©
Ôò${k_1}^¡ä$${k_2}^¡ä$=$\frac{y}{\frac{{y}^{2}}{4}+1}$¡Á$\frac{y}{\frac{{y}^{2}}{4}-1}$=$\frac{{y}^{2}}{£¨\frac{{y}^{2}}{4}£©^{2}-1}$=$\frac{16{y}^{2}}{{y}^{4}-16}$£¬£¨y2£¾$\frac{8}{3}$ÇÒy¡Ù¡À2£©
Ôò$\frac{1}{{{k_1}^¡ä{k_2}^¡ä}}$=$\frac{{y}^{4}-16}{16{y}^{2}}$£¬£¨y2£¾$\frac{8}{3}$ÇÒy¡Ù¡À2£©
Áît=y2£¬£¨t£¾$\frac{8}{3}$ÇÒt¡Ù4£¬£©
Éèf£¨t£©=$\frac{{t}^{2}-16}{16t}$=$\frac{t}{16}$-$\frac{1}{t}$£¬£¨t£¾$\frac{8}{3}$ÇÒt¡Ù4£¬£©£¬Çóµ¼f¡ä£¨t£©=$\frac{1}{16}$+$\frac{1}{{t}^{2}}$£¾0
¡àf£¨t£©ÔÚ£¨$\frac{8}{3}$£¬4£©£¬£¨4£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
¡àf£¨t£©µÄȡֵ·¶Î§£¨-$\frac{5}{24}$£¬0£©¡È£¨0£¬+¡Þ£©
¡à$\frac{1}{{{k_1}^¡ä{k_2}^¡ä}}$µÄȡֵ·¶Î§$£¨-\frac{5}{24}£¬0£©¡È£¨0£¬+¡Þ£©$£®![]()
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏßµÄбÂʹ«Ê½£¬ÍÖÔ²¼°Ë«ÇúÏßµÄÐÔÖÊ£¬º¯Êýµ¥µ÷ÐÔÓëµ¼ÊýµÄ¹ØÏµ£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ?¦Ë£¾0£¬Ê¹µÃ$\overrightarrow c¡Í\overrightarrow d$ | B£® | ?¦Ë£¾0£¬Ê¹µÃ£¼$\overrightarrow{c}$£¬$\overrightarrow{d}$£¾=60¡ã | ||
| C£® | ?¦Ë£¼0£¬Ê¹µÃ£¼$\overrightarrow{c}$£¬$\overrightarrow{d}$£¾=30¡ã | D£® | ?¦Ë£¾0£¬Ê¹µÃ$\overrightarrow c=m\overrightarrow d£¨m$Ϊ²»Îª0µÄ³£Êý£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com