精英家教网 > 高中数学 > 题目详情
5.已知直线l1:x-2y=0的倾斜角为α,倾斜角为2α的直线l2与圆M:x2+y2+2x-2y+F=0交于A、C两点,其中A(-1,0)、B、D在圆M上,且位于直线l2的两侧,则四边形ABCD的面积的最大值是$\frac{8}{5}$.

分析 由已知求出tanα,得到直线l2的斜率,进一步求得方程,由A在圆上求得F,得到圆的方程,求出圆心坐标和半径,利用垂径定理求得|AC|的长度,然后结合圆与直线的位置关系图象,将ABCD的面积看成两个三角形△ABC和△ACD的面积之和,分析可得当BD为AC的垂直平分线时,四边形ABCD的面积最大.

解答 解:直线l1:x-2y=0的倾斜角为α,则tanα=$\frac{1}{2}$,
∴直线l2的斜率k=tan2α=$\frac{2tanα}{1-ta{n}^{2}α}=\frac{2×\frac{1}{2}}{1-\frac{1}{4}}=\frac{4}{3}$.
则直线l2的方程为y-0=$\frac{4}{3}$(x+1),即4x-3y+4=0.
又A(-1,0)在圆上,∴(-1)2-2+F=0,得F=1,
∴圆的方程为x2+y2+2x-2y+1=0,化为标准方程:(x+1)2+(y-1)2=1,圆心(-1,1),半径r=1.
直线l2与圆M相交于A,C两点,由点到直线的距离公式得弦心距d=$\frac{|4×(-1)-3×1+4|}{\sqrt{{4}^{2}+(-3)^{2}}}=\frac{3}{5}$,
由勾股定理得半弦长=$\sqrt{{1}^{2}-(\frac{3}{5})^{2}}=\frac{4}{5}$,
弦长|AC|=2×$\frac{4}{5}$=$\frac{8}{5}$.
又B,D两点在圆上,并且位于直线l2的两侧,四边形ABCD的面积可以看成是两个三角形△ABC和△ACD的面积之和,
如图所示,
当BD为弦AC的垂直平分线时(即为直径时),两三角形的面积之和最大,即四边形ABCD的面积最大,
最大面积为:S=$\frac{1}{2}$|AC|×|BE|+$\frac{1}{2}$|AC|×|DE|=$\frac{1}{2}$|AC|×|BD|=$\frac{1}{2}$×$\frac{8}{5}$×2=$\frac{8}{5}$,
故答案为:$\frac{8}{5}$.

点评 本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2n+1}$(n∈N*),则当n=2时,f(n)是$\frac{137}{60}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图程序框图,若输入的a,b分别为16,12,则输出的a=(  )
A.1B.2C.4D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=|2x-1|.
(Ⅰ)解关于x的不等式f(2x)≤f(x+1);
(Ⅱ)若实数a,b满足a-2b=2,求f(a+1)+f(2b-1)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.运行如图程序框图,分别输入t=1,5,则输出S的和为(  )
A.10B.5C.0D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在(3,6)内的概率为(  )
附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544.
A.0.2718B.0.0456C.0.3174D.0.1359

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.甲、乙两人轮流投篮,每次投篮甲投中的概率为$\frac{1}{2}$,乙投中的概率为$\frac{1}{3}$,规定:甲先投,若甲投中,则甲继续投,否则由乙投;若乙投中,则乙继续投,否则由甲投.两人按此规则进行投篮,则第五次为甲投篮的概率为$\frac{203}{432}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)长轴的两顶点为A、B,左右焦点分别为F1、F2,焦距为2c且a=2c,过F1且垂直于x轴的直线被椭圆C截得的线段长为3.
(1)求椭圆C的方程;
(2)在双曲线$T:\frac{x^2}{4}-\frac{y^2}{3}=1$上取点Q(异于顶点),直线OQ与椭圆C交于点P,若直线AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4,试证明:k1+k2+k3+k4为定值;
(3)在椭圆C外的抛物线K:y2=4x上取一点E,若EF1、EF2的斜率分别为${k_1}^′$、${k_2}^′$,求$\frac{1}{{{k_1}^′{k_2}^′}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知变量x、y满足约束条件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-2y+3≥0}\\{x≤a}\end{array}\right.$,且z=x+2y的最小值为3,则$\frac{y}{x+1}$≥$\frac{1}{2}$的概率是(  )
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{5}{9}$

查看答案和解析>>

同步练习册答案