精英家教网 > 高中数学 > 题目详情
20.运行如图程序框图,分别输入t=1,5,则输出S的和为(  )
A.10B.5C.0D.-5

分析 根据程序框图的功能进行求解即可.

解答 解:模拟程序的运行,可得程序框图的功能为计算并输出S=$\left\{\begin{array}{l}{{t}^{2}-4t}&{t≥2}\\{5t}&{t<2}\end{array}\right.$的值,
则当输入的t=1时,S=5×1=5,
当输入的t=5时,S=52-4×5=5,
则输出S的和为5+5=10.
故选:A.

点评 本题主要考查程序框图的识别和判断,根据条件结构,结合分段函数的表达式是解决本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知公比为2的等比数列{an},若a2+a3=2,则a4+a5=(  )
A.$\frac{1}{2}$B.1C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.袋中装有大小相同的4个红球和6个白球,从中取出4个球.
(1)若取出的球必须是两种颜色,则有多少种不同的取法?
(2)若取出的红球个数不少于白球个数,则有多少种不同的取法?
(3)取出一个红球记2分,取出一个白球记1分,若取4球的总分不低于5分,则有多少种不同的取法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在△OAB中,C是AB上一点,且AC=2CB,设 $\overrightarrow{OA}=\overrightarrow a,\overrightarrow{OB}=\vec b$,则$\overrightarrow{OC}$=$\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$.(用$\overrightarrow a,\overrightarrow b$表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆C1:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{p}^{2}}$=1(m>p>0)与双曲线C2:$\frac{{x}^{2}}{{n}^{2}}$-$\frac{{y}^{2}}{{p}^{2}}$=1(n>0)有公共的焦点F1,F2,设M为C1与C2在第一象限内的交点,|F1F2|=2c.则(  )
A.m2+n2=2c2,且∠F1MF2>$\frac{π}{2}$B.m2+n2=2c2,且∠F1MF2=$\frac{π}{2}$
C.m2+n2=4c2,且∠F1MF2>$\frac{π}{2}$D.m2+n2=4c2,且∠F1MF2=$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线l1:x-2y=0的倾斜角为α,倾斜角为2α的直线l2与圆M:x2+y2+2x-2y+F=0交于A、C两点,其中A(-1,0)、B、D在圆M上,且位于直线l2的两侧,则四边形ABCD的面积的最大值是$\frac{8}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知{an}是公差为2的等差数列,若a1,a3,a4成等比数列,则a2=(  )
A.-4B.-8C.-10D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距为2,点Q($\frac{{a}^{2}}{\sqrt{{a}^{2}-{b}^{2}}}$,0)在直线l:x=3上.
(1)求椭圆C的标准方程;
(2)若O为坐标原点,P为直线l上一动点,过点P作直线与椭圆相切点于点A,求△POA面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1,${C_2}:\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t-1\\ y=\frac{{\sqrt{2}}}{2}t+1\end{array}\right.$(t为参数).
(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;
(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的$\sqrt{3}$倍,得到曲线${C_1}^′$.设P(-1,1),曲线C2与${C_1}^′$交于A,B两点,求|PA|+|PB|.

查看答案和解析>>

同步练习册答案