分析 (Ⅰ)求出曲线C1的直角坐标方程为:x2+y2=1,C2:y=x+2,再求出圆心到直线距离,由此能求出曲线C1上的点到曲线C2距离的最小值.
(Ⅱ)伸缩变换为$\left\{\begin{array}{l}{{x}^{'}=2x}\\{{y}^{'}=\sqrt{3}y}\end{array}\right.$,从而曲线${C_1}^′$:$\frac{{{x}^{'}}^{2}}{4}+\frac{{{y}^{'}}^{2}}{3}$=1,${C_2}:\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t-1\\ y=\frac{{\sqrt{2}}}{2}t+1\end{array}\right.$(t为参数)代入曲线${C_1}^′$,得$7{t}^{2}+2\sqrt{2}t-10=0$.由此能求出|PA|+|PB|.
解答 解:(Ⅰ)∵曲线C1:ρ=1,∴曲线C1的直角坐标方程为:x2+y2=1,
∴圆心为(0,0),半径为r=1,
${C_2}:\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t-1\\ y=\frac{{\sqrt{2}}}{2}t+1\end{array}\right.$(t为参数)消去参数t的C2:y=x+2,(2分)
∴圆心到直线距离d=$\frac{|2|}{\sqrt{2}}=\sqrt{2}$,(3分)
∴曲线C1上的点到曲线C2距离的最小值为$\sqrt{2}-1$.(5分)
(Ⅱ)∵把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的$\sqrt{3}$倍,得到曲线${C_1}^′$.
∴伸缩变换为$\left\{\begin{array}{l}{{x}^{'}=2x}\\{{y}^{'}=\sqrt{3}y}\end{array}\right.$,∴曲线${C_1}^′$:$\frac{{{x}^{'}}^{2}}{4}+\frac{{{y}^{'}}^{2}}{3}$=1,(7分)
${C_2}:\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t-1\\ y=\frac{{\sqrt{2}}}{2}t+1\end{array}\right.$(t为参数)代入曲线${C_1}^′$,整理得$7{t}^{2}+2\sqrt{2}t-10=0$.
∵t1t2<0,(8分)
∴|PA|+|PB|=|t1|+|t2|=|t1-t2|=$\frac{12\sqrt{2}}{7}$.(10分)
点评 本题考查曲线上的点到直线的距离的最小值的求法,考查两线段和的求法,考查极坐标方程、直角坐标方程、参数方程的互化,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 函数$f(x)=sin\sqrt{x}$不是周期函数. | |
| B. | 函数$f(x)=sin\frac{1}{x}$不是周期函数. | |
| C. | 函数f(x)=sin|x|不是周期函数. | |
| D. | 函数f(x)=|sinx|+|cosx|的最小正周期为π. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com