精英家教网 > 高中数学 > 题目详情
6.已知P为函数$y=\frac{4}{x}$的图象上任一点,过点P作直线PA,PB分别与圆x2+y2=1相切于A,B两点,直线AB交x轴于M点,交y轴于N点,则△OMN的面积为$\frac{1}{8}$.

分析 设出P(x0,y0),得${x}_{0}•{y}_{0}=\frac{1}{4}$.再由圆系方程求出过两切点A,B的直线方程,分别求出M点,N点的坐标,代入三角形面积公式得答案.

解答 解:设P(x0,y0),则${x}_{0}•{y}_{0}=\frac{1}{4}$.
以OP为直径的圆的方程为$(x-\frac{{x}_{0}}{2})^{2}+(y-\frac{{y}_{0}}{2})^{2}=\frac{{{x}_{0}}^{2}+{{y}_{0}}^{2}}{4}$,
整理得:x2+y2-x0x-y0y=0,
又圆x2+y2=1,
两式作差可得x0x+y0y=1,即过A、B两切点的直线方程.
取y=0,得$x=\frac{1}{{x}_{0}}$,取x=0,得y=$\frac{1}{{y}_{0}}$.
∴${S}_{△OMN}=\frac{1}{2}|\frac{1}{{x}_{0}}||\frac{1}{{y}_{0}}|=\frac{1}{2}×\frac{1}{4}=\frac{1}{8}$.
故答案为:$\frac{1}{8}$.

点评 本题考查直线与圆位置关系的应用,考查数学转化思想方法和数形结合的解题思想方法,求出AB方程是关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.执行如图程序框图,若输入的a,b分别为16,12,则输出的a=(  )
A.1B.2C.4D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.甲、乙两人轮流投篮,每次投篮甲投中的概率为$\frac{1}{2}$,乙投中的概率为$\frac{1}{3}$,规定:甲先投,若甲投中,则甲继续投,否则由乙投;若乙投中,则乙继续投,否则由甲投.两人按此规则进行投篮,则第五次为甲投篮的概率为$\frac{203}{432}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)长轴的两顶点为A、B,左右焦点分别为F1、F2,焦距为2c且a=2c,过F1且垂直于x轴的直线被椭圆C截得的线段长为3.
(1)求椭圆C的方程;
(2)在双曲线$T:\frac{x^2}{4}-\frac{y^2}{3}=1$上取点Q(异于顶点),直线OQ与椭圆C交于点P,若直线AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4,试证明:k1+k2+k3+k4为定值;
(3)在椭圆C外的抛物线K:y2=4x上取一点E,若EF1、EF2的斜率分别为${k_1}^′$、${k_2}^′$,求$\frac{1}{{{k_1}^′{k_2}^′}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.关于周期函数,下列说法错误的是(  )
A.函数$f(x)=sin\sqrt{x}$不是周期函数.
B.函数$f(x)=sin\frac{1}{x}$不是周期函数.
C.函数f(x)=sin|x|不是周期函数.
D.函数f(x)=|sinx|+|cosx|的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知动点P(x,y)与一定点F(1,0)的距离和它到一定直线l:x=4的距离之比为$\frac{1}{2}$.
(1)求动点P(x,y)的轨迹C的方程;
(2)己知直线l':x=my+1交轨迹C于A、B两点,过点A、B分别作直线l的垂线,垂足依次为点D、E.连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出定点的坐标,并给予证明;否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)为定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=x2+x,求当x∈(-∞,0)时,f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知变量x、y满足约束条件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-2y+3≥0}\\{x≤a}\end{array}\right.$,且z=x+2y的最小值为3,则$\frac{y}{x+1}$≥$\frac{1}{2}$的概率是(  )
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x,y满足不等式$\left\{\begin{array}{l}x+y≤2\\ 2x+y≤3\\ x≥0\\ y≥0\end{array}\right.$,则3x+2y的最大值为(  )
A.0B.2C.4D.5

查看答案和解析>>

同步练习册答案