分析 (1)直接利用求轨迹方程的步骤,由题意列出满足动点P(x,y)到定点F(1,0)的距离和它到一定直线l:x=4的距离之比为$\frac{1}{2}$的等式,整理后即可得到点P的轨迹;
(2)如果存在满足条件的定点N,则该点对于m=0的直线也成立,所以先取m=0,与椭圆联立后解出A、B的坐标,同时求出D、E的坐标,由两点式写出AE、BD所在的直线方程,两直线联立求出N的坐标,然后证明该点对于m取其它值时也满足直线AE、BD是相交于定点N,方法是用共线向量基本定理.
解答 解:(1)由题意得$\frac{\sqrt{(x-1)^{2}+{y}^{2}}}{丨x-4丨}$=$\frac{1}{2}$,
即2$\sqrt{(x-1)^{2}+{y}^{2}}$=丨x-4丨,
两边平方得:4x2-8x+4+4y2=x2-8x+16.整理得:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
∴动点P(x,y)的轨迹C的方程为椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)当m变化时,直线AE、BD相交于一定点N($\frac{5}{2}$,0).
证明:如图,![]()
当m=0时,联立直线x=1与椭圆 $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,
得A(1,$\frac{3}{2}$)、B(1,-$\frac{3}{2}$)、D(4,$\frac{3}{2}$)、E(4,-$\frac{3}{2}$),
过A、B作直线x=4的垂线,得两垂足D(4,$\frac{3}{2}$)、E(4,-$\frac{3}{2}$),
由直线方程的两点式得:直线AE的方程为:2x+2y-5=0,直线BD的方程为:2x-2y-5=0,
方程联立解得x=$\frac{5}{2}$,y=0,
直线AE、BD相交于一点($\frac{5}{2}$,0).
假设直线AE、BD相交于一定点N($\frac{5}{2}$,0).
证明:设A(my1+1,y1),B(my2+1,y2),则D(4,y1),E(4,y2),
由$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,消去x,并整理得(3m2+4)y2+6my-9=0,
△=36m2-4×(3m2+4)×(-9)=144m2+144>0>0,
由韦达定理得y1+y2=-$\frac{6m}{3{m}^{2}+4}$,y1y2=-$\frac{9}{3{m}^{2}+4}$.
由$\overrightarrow{NA}$=(my1-$\frac{3}{2}$,y1),$\overrightarrow{NE}$=($\frac{3}{2}$,y2),
则(my1-$\frac{3}{2}$)y2-$\frac{3}{2}$y1=my1y2-$\frac{3}{2}$(y1+y2)=m×(-$\frac{9}{3{m}^{2}+4}$)-$\frac{3}{2}$×(-$\frac{6m}{3{m}^{2}+4}$)=0
所以,$\overrightarrow{NA}$∥$\overrightarrow{NE}$,所以A、N、E三点共线,
同理可证B、N、D三点共线,所以直线AE、BD相交于一定点N($\frac{5}{2}$,0).
点评 本题考查了轨迹方程,考查了直线与椭圆的综合,对于定点的存在性问题,先找出满足条件的特殊点,然后对其它情况进行证明是该类问题常用的方法.属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com