精英家教网 > 高中数学 > 题目详情
13.在直角坐标系xOy中,点P(0,$\sqrt{3}$),以原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为${ρ^2}=\frac{4}{{1+{{cos}^2}θ}}$.直线l的参数方程为$\left\{{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.(t$为参数).
(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)设直线l与曲线C的两个交点分别为A,B,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

分析 (Ⅰ)由曲线C的极坐标方程能求出曲线C的直角坐标方程;直线l的参数方程消去t,能求出直线l的普通方程.
(Ⅱ)点P(0,$\sqrt{3}$)在直线l:$\sqrt{3}x+y=\sqrt{3}$上,将直线l的参数方程代入曲线C的直角坐标方程,得5t2+12t-4=0,设两根为t1,t2,则${t}_{1}+{t}_{2}=-\frac{12}{5}$,${t}_{1}{t}_{2}=-\frac{4}{5}$,由此能求出$\frac{1}{|PA|}$+$\frac{1}{|PB|}$.

解答 解:(Ⅰ)∵曲线C的极坐标方程为${ρ^2}=\frac{4}{{1+{{cos}^2}θ}}$,
∴曲线C的直角坐标方程为$\frac{{x}^{2}}{2}+\frac{{y}^{2}}{4}=1$,
∵直线l的参数方程为$\left\{{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.(t$为参数),
∴消去t得直线l的普通方程为$\sqrt{3}x+y=\sqrt{3}$.…(5分)
(Ⅱ)点P(0,$\sqrt{3}$)在直线l:$\sqrt{3}x+y=\sqrt{3}$上,将直线l的参数方程代入曲线C的直角坐标方程,
得2(-$\frac{1}{2}t$)2+($\sqrt{3}+\frac{\sqrt{3}}{2}t$)2=4,∴5t2+12t-4=0,
设两根为t1,t2,则${t}_{1}+{t}_{2}=-\frac{12}{5}$,${t}_{1}{t}_{2}=-\frac{4}{5}$,故t1与t2异号,
∴|PA|+|PB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\frac{4\sqrt{14}}{5}$,
|PA|•|PB|=|t1•t2|=-t1t2=$\frac{4}{5}$,
∴$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{|PA|+|PB|}{|PA|•|PB|}$=$\sqrt{14}$.…(10分)

点评 本题考查曲线的直角坐标方程及直线的普通方程的求法,考查两线段倒数和的取值范围的求法,考查极坐标方程、直角坐标方程、参数方程的互化,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知A,B,C三点都在体积为$\frac{500π}{3}$的球O的表面上,若AB=4,∠ACB=30°,则球心O到平面ABC的距离为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知曲线C:y=sin(2x+φ)(|φ|<$\frac{π}{2}$)的一条对称轴方程为x=$\frac{π}{6}$,曲线C向左平移θ(θ>0)个单位长度,得到的曲线E的一个对称中心为($\frac{π}{6}$,0),则|φ-θ|的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系中,直线l过定点(-1,0),且倾斜角为α(0<α<π),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ=cosθ(ρcosθ+8).
(1)写出l的参数方程和C的直角坐标方程;
(2)若直线l与曲线C交于A,B两点,且$|AB|=8\sqrt{10}$,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若实数x,y满足$\left\{\begin{array}{l}{2x-y≤2}\\{x-y≥-1}\\{x+y≥1}\end{array}\right.$,则2x+y的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U,集合M,N满足M⊆N⊆U,则下列结论正确的是(  )
A.M∪N=UB.(∁UM)∪(∁UN)=UC.M∩(∁UN)=∅D.(∁UM)∪(∁UN)=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,$AB=AC=\frac{1}{2}A{A_1}$,AB⊥AC,D是棱BB1的中点.
(Ⅰ)证明:平面A1DC⊥平面ADC;
(Ⅱ)求平面A1DC与平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x2+x-6>0},集合B={x|-1<x<3},若a∈(A∪B),则a可以是(  )
A.-3B.-2C.-1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知椭圆C:$\frac{x^2}{4}+\frac{y^2}{3}$=1的左顶点、上顶点、右焦点分别为A,B,F,则$\overrightarrow{AB}•\overrightarrow{AF}$=6.

查看答案和解析>>

同步练习册答案