精英家教网 > 高中数学 > 题目详情
16.A,B是圆O:x2+y2=1上不同的两点,且$\overrightarrow{OA}•\overrightarrow{OB}=0$,若存在实数λ,μ使得$\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,则点C在圆O上的充要条件是(  )
A.λ22=1B.$\frac{1}{λ}$+$\frac{1}{μ}$=1C.λ•μ=1D.λ+μ=1

分析 由点C在圆O上?$|\overrightarrow{OC}|=1$,即$|λ\overrightarrow{OA}+μ\overrightarrow{OB}{|}^{2}=1$,展开后结合已知整理得答案.

解答 解:∵$\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,
∴点C在圆O上?$|\overrightarrow{OC}|=1$,即$|λ\overrightarrow{OA}+μ\overrightarrow{OB}{|}^{2}=1$,
∴${λ}^{2}|\overrightarrow{OA}{|}^{2}+2λμ\overrightarrow{OA}•\overrightarrow{OB}+{μ}^{2}|\overrightarrow{OB}{|}^{2}=1$.
∵$|\overrightarrow{OA}|=|\overrightarrow{OB}|=1$,且$\overrightarrow{OA}•\overrightarrow{OB}=0$,
∴λ22=1.
故选:A.

点评 本题考查平面向量的数量积运算,考查充分必要条件的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设复数z满足(1+i)z=-2i,i为虚数单位,则z=(  )
A.-1+iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知各项均为正数的等差数列{an}满足:a4=2a2,且a1,4,a4成等比数列,设{an}的前n项和为Sn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列$\left\{{\frac{S_n}{{n•{2^n}}}}\right\}$的前n项和为Tn,求证:Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥P-ABCD的底面ABCD为平行四边形,平面PAB⊥平面ABCD,PB=PC,∠ABC=45°,点E是线段PA上靠近点A的三等分点.
(Ⅰ)求证:AB⊥PC;
(Ⅱ)若△PAB是边长为2的等边三角形,求直线DE与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow a=(m,n),\overrightarrow b=(1,-2)$,若$|\overrightarrow a|=2\sqrt{5},\overrightarrow a=λ\overrightarrow b(λ<0)$,则m-n=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=4sinx•cos2($\frac{x}{2}$+$\frac{π}{4}$)-cos2x.
(1)将函数y=f(2x)的图象向右平移$\frac{π}{6}$个单位长度得到函数y=g(x)的图象,求函数g(x)在x∈[$\frac{π}{12}$,$\frac{π}{2}$]上的值域;
(2)已知a,b,c分别为△ABC中角A,B,C的对边,且满足b=2,f(A)=$\sqrt{2}-1,\sqrt{3}$a=2bsinA,
B∈(0,$\frac{π}{2}$),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a1、a2∈R,且$\frac{1}{2+sin{α}_{1}}$+$\frac{1}{2+sin(2{α}_{2})}$=2,则|10π-α12|的最小值等于$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了研究某种微生物的生长规律,需要了解环境温度x(°C)对该微生物的活性指标y的影响,某实验小组设计了一组实验,并得到如表的实验数据:
环境温度x(°C)1234567
活性指标y28272624252322
(Ⅰ)由表中数据判断y关于x的关系较符合$\widehaty=\widehatbx+\widehata$还是$\widehaty={2^{\widehatbx+\widehata}}$,并求y关于x的回归方程($\widehata$,$\widehatb$取整数);
(Ⅱ)根据(Ⅰ)中的结果分析:若要求该种微生物的活性指标不能低于26.3,则环境温度应不得高于多少°C?
附:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在[0,a](a>0)上随机抽取一个实数x,若x满足$\frac{x-2}{x+1}$<0的概率为$\frac{1}{2}$,则实数a的值为4.

查看答案和解析>>

同步练习册答案