精英家教网 > 高中数学 > 题目详情
9.已知是某几何体的三视图,则该几何体的体积为(  )
A.$\frac{1}{3}+\frac{π}{12}$B.$1+\frac{π}{12}$C.$\frac{1}{3}+\frac{π}{4}$D.$1+\frac{π}{4}$

分析 由三视图可知:该几何体由圆锥的$\frac{1}{4}$与一个三棱柱组成的.

解答 解:由三视图可知:该几何体由圆锥的$\frac{1}{4}$与一个三棱柱组成的.
∴该几何体的体积V=$\frac{1}{4}×\frac{1}{3}×π×{1}^{2}×1$+$\frac{1}{2}×{1}^{2}×2$=1+$\frac{π}{12}$.
故选:B.

点评 本题考查了圆锥与三棱柱的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知$1+\frac{1}{1+2}=\frac{4}{3}$,$1+\frac{1}{1+2}+\frac{1}{1+2+3}=\frac{3}{2}$,$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}=\frac{8}{5}$,…,若$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+…+\frac{1}{1+2+3+…+n}=\frac{12}{7}$,则n=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线E:y2=4x,设A、B是抛物线E上分别位于x轴两侧的两个动点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{9}{4}$(其中O为坐标原点)
(Ⅰ)求证:直线AB必过定点,并求出该定点Q的坐标;
(Ⅱ)过点Q作AB的垂线与抛物线交于G、D两点,求四边形AGBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足条件$\left\{\begin{array}{l}{4x-y-8≤0}\\{2x-3y+6≥0}\\{x+y-2≥0}\end{array}\right.$,若x2+2y2≥m恒成立,则实数m的最大值为(  )
A.5B.$\frac{4}{3}$C.$\sqrt{2}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知曲线C:y=sin(2x+φ)(|φ|<$\frac{π}{2}$)的一条对称轴方程为x=$\frac{π}{6}$,曲线C向左平移θ(θ>0)个单位长度,得到的曲线E的一个对称中心为($\frac{π}{6}$,0),则|φ-θ|的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校高一(1)(2)两个班联合开展“诗词大会进校园,国学经典润心田”古诗词竞赛主题班会活动,主持人从这两个班分别随机选出20名同学进行当场测试,他们的测试成绩按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分组,分别用频率分布直方图与茎叶图统计如图(单位:分):

(2)班20名学生成绩茎叶图:
 4 5
 5 2
 64 5 6 8
 7 0 5 5 8 8 8 8 9
 80 0 5 5  
 94 5 
(Ⅰ)分别计算两个班这20名同学的测试成绩在[80,90)的频率,并补全频率分布直方图;
(Ⅱ)分别从两个班随机选取1人,设这两人中成绩在[80,90)的人数为X,求X的分布列(频率当作概率使用).
(Ⅲ)运用所学统计知识分析比较两个班学生的古诗词水平.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系中,直线l过定点(-1,0),且倾斜角为α(0<α<π),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ=cosθ(ρcosθ+8).
(1)写出l的参数方程和C的直角坐标方程;
(2)若直线l与曲线C交于A,B两点,且$|AB|=8\sqrt{10}$,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U,集合M,N满足M⊆N⊆U,则下列结论正确的是(  )
A.M∪N=UB.(∁UM)∪(∁UN)=UC.M∩(∁UN)=∅D.(∁UM)∪(∁UN)=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知e为自然对数的底,a=($\frac{2}{e}$)-0.2,b=($\frac{e}{2}$)0.4,c=$lo{g}_{\frac{2}{e}}e$,则a,b,c的大小关系是(  )
A.c<a<bB.c<b<aC.b<a<cD.a<b<c

查看答案和解析>>

同步练习册答案